summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Binary/NBinary.v
blob: b83e54773324d3e68fed9b4796905b9f4bee6b73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: NBinary.v 13323 2010-07-24 15:57:30Z herbelin $ i*)

Require Import BinPos.
Require Export BinNat.
Require Import NAxioms NProperties.

Local Open Scope N_scope.

(** * Implementation of [NAxiomsSig] module type via [BinNat.N] *)

Module NBinaryAxiomsMod <: NAxiomsSig.

(** Bi-directional induction. *)

Theorem bi_induction :
  forall A : N -> Prop, Proper (eq==>iff) A ->
    A N0 -> (forall n, A n <-> A (Nsucc n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS. apply Nrect. assumption. intros; now apply -> AS.
Qed.

(** Basic operations. *)

Definition eq_equiv : Equivalence (@eq N) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) Nsucc.
Program Instance pred_wd : Proper (eq==>eq) Npred.
Program Instance add_wd : Proper (eq==>eq==>eq) Nplus.
Program Instance sub_wd : Proper (eq==>eq==>eq) Nminus.
Program Instance mul_wd : Proper (eq==>eq==>eq) Nmult.

Definition pred_succ := Npred_succ.
Definition add_0_l := Nplus_0_l.
Definition add_succ_l := Nplus_succ.
Definition sub_0_r := Nminus_0_r.
Definition sub_succ_r := Nminus_succ_r.
Definition mul_0_l := Nmult_0_l.
Definition mul_succ_l n m := eq_trans (Nmult_Sn_m n m) (Nplus_comm _ _).

(** Order *)

Program Instance lt_wd : Proper (eq==>eq==>iff) Nlt.

Definition lt_eq_cases := Nle_lteq.
Definition lt_irrefl := Nlt_irrefl.

Theorem lt_succ_r : forall n m, n < (Nsucc m) <-> n <= m.
Proof.
intros n m; unfold Nlt, Nle; destruct n as [| p]; destruct m as [| q]; simpl;
split; intro H; try reflexivity; try discriminate.
destruct p; simpl; intros; discriminate. exfalso; now apply H.
apply -> Pcompare_p_Sq in H. destruct H as [H | H].
now rewrite H. now rewrite H, Pcompare_refl.
apply <- Pcompare_p_Sq. case_eq ((p ?= q)%positive Eq); intro H1.
right; now apply Pcompare_Eq_eq. now left. exfalso; now apply H.
Qed.

Theorem min_l : forall n m, n <= m -> Nmin n m = n.
Proof.
unfold Nmin, Nle; intros n m H.
destruct (n ?= m); try reflexivity. now elim H.
Qed.

Theorem min_r : forall n m, m <= n -> Nmin n m = m.
Proof.
unfold Nmin, Nle; intros n m H.
case_eq (n ?= m); intro H1; try reflexivity.
now apply -> Ncompare_eq_correct.
rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
Qed.

Theorem max_l : forall n m, m <= n -> Nmax n m = n.
Proof.
unfold Nmax, Nle; intros n m H.
case_eq (n ?= m); intro H1; try reflexivity.
symmetry; now apply -> Ncompare_eq_correct.
rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
Qed.

Theorem max_r : forall n m : N, n <= m -> Nmax n m = m.
Proof.
unfold Nmax, Nle; intros n m H.
destruct (n ?= m); try reflexivity. now elim H.
Qed.

(** Part specific to natural numbers, not integers. *)

Theorem pred_0 : Npred 0 = 0.
Proof.
reflexivity.
Qed.

Definition recursion (A : Type) : A -> (N -> A -> A) -> N -> A :=
  Nrect (fun _ => A).
Implicit Arguments recursion [A].

Instance recursion_wd A (Aeq : relation A) :
 Proper (Aeq==>(eq==>Aeq==>Aeq)==>eq==>Aeq) (@recursion A).
Proof.
intros a a' Eaa' f f' Eff'.
intro x; pattern x; apply Nrect.
intros x' H; now rewrite <- H.
clear x.
intros x IH x' H; rewrite <- H.
unfold recursion in *. do 2 rewrite Nrect_step.
now apply Eff'; [| apply IH].
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : N -> A -> A), recursion a f N0 = a.
Proof.
intros A a f; unfold recursion; now rewrite Nrect_base.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)).
Proof.
unfold recursion; intros A Aeq a f EAaa f_wd n; pattern n; apply Nrect.
rewrite Nrect_step; rewrite Nrect_base; now apply f_wd.
clear n; intro n; do 2 rewrite Nrect_step; intro IH. apply f_wd; [reflexivity|].
now rewrite Nrect_step.
Qed.

(** The instantiation of operations.
    Placing them at the very end avoids having indirections in above lemmas. *)

Definition t := N.
Definition eq := @eq N.
Definition zero := N0.
Definition succ := Nsucc.
Definition pred := Npred.
Definition add := Nplus.
Definition sub := Nminus.
Definition mul := Nmult.
Definition lt := Nlt.
Definition le := Nle.
Definition min := Nmin.
Definition max := Nmax.

End NBinaryAxiomsMod.

Module Export NBinaryPropMod := NPropFunct NBinaryAxiomsMod.

(*
Require Import NDefOps.
Module Import NBinaryDefOpsMod := NdefOpsPropFunct NBinaryAxiomsMod.

(* Some fun comparing the efficiency of the generic log defined
by strong (course-of-value) recursion and the log defined by recursion
on notation *)

Time Eval vm_compute in (log 500000). (* 11 sec *)

Fixpoint binposlog (p : positive) : N :=
match p with
| xH => 0
| xO p' => Nsucc (binposlog p')
| xI p' => Nsucc (binposlog p')
end.

Definition binlog (n : N) : N :=
match n with
| 0 => 0
| Npos p => binposlog p
end.

Time Eval vm_compute in (binlog 500000). (* 0 sec *)
Time Eval vm_compute in (binlog 1000000000000000000000000000000). (* 0 sec *)

*)