summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Binary/NBinDefs.v
blob: fc2bd2dfdab69b611727e55f6d0adf4657b4a1d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: NBinDefs.v 11040 2008-06-03 00:04:16Z letouzey $ i*)

Require Import BinPos.
Require Export BinNat.
Require Import NSub.

Open Local Scope N_scope.

(** Implementation of [NAxiomsSig] module type via [BinNat.N] *)

Module NBinaryAxiomsMod <: NAxiomsSig.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := N.
Definition NZeq := @eq N.
Definition NZ0 := N0.
Definition NZsucc := Nsucc.
Definition NZpred := Npred.
Definition NZadd := Nplus.
Definition NZsub := Nminus.
Definition NZmul := Nmult.

Theorem NZeq_equiv : equiv N NZeq.
Proof (eq_equiv N).

Add Relation N NZeq
 reflexivity proved by (proj1 NZeq_equiv)
 symmetry proved by (proj2 (proj2 NZeq_equiv))
 transitivity proved by (proj1 (proj2 NZeq_equiv))
as NZeq_rel.

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
congruence.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
congruence.
Qed.

Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
Proof.
congruence.
Qed.

Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
Proof.
congruence.
Qed.

Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
Proof.
congruence.
Qed.

Theorem NZinduction :
  forall A : NZ -> Prop, predicate_wd NZeq A ->
    A N0 -> (forall n, A n <-> A (NZsucc n)) -> forall n : NZ, A n.
Proof.
intros A A_wd A0 AS. apply Nrect. assumption. intros; now apply -> AS.
Qed.

Theorem NZpred_succ : forall n : NZ, NZpred (NZsucc n) = n.
Proof.
destruct n as [| p]; simpl. reflexivity.
case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
intro H; false_hyp H Psucc_not_one.
Qed.

Theorem NZadd_0_l : forall n : NZ, N0 + n = n.
Proof.
reflexivity.
Qed.

Theorem NZadd_succ_l : forall n m : NZ, (NZsucc n) + m = NZsucc (n + m).
Proof.
destruct n; destruct m.
simpl in |- *; reflexivity.
unfold NZsucc, NZadd, Nsucc, Nplus. rewrite <- Pplus_one_succ_l; reflexivity.
simpl in |- *; reflexivity.
simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
Qed.

Theorem NZsub_0_r : forall n : NZ, n - N0 = n.
Proof.
now destruct n.
Qed.

Theorem NZsub_succ_r : forall n m : NZ, n - (NZsucc m) = NZpred (n - m).
Proof.
destruct n as [| p]; destruct m as [| q]; try reflexivity.
now destruct p.
simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
Qed.

Theorem NZmul_0_l : forall n : NZ, N0 * n = N0.
Proof.
destruct n; reflexivity.
Qed.

Theorem NZmul_succ_l : forall n m : NZ, (NZsucc n) * m = n * m + m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl; try reflexivity.
now rewrite Pmult_Sn_m, Pplus_comm.
Qed.

End NZAxiomsMod.

Definition NZlt := Nlt.
Definition NZle := Nle.
Definition NZmin := Nmin.
Definition NZmax := Nmax.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
Proof.
congruence.
Qed.

Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
Proof.
congruence.
Qed.

Theorem NZlt_eq_cases : forall n m : N, n <= m <-> n < m \/ n = m.
Proof.
intros n m. unfold Nle, Nlt. rewrite <- Ncompare_eq_correct.
destruct (n ?= m); split; intro H1; (try discriminate); try (now left); try now right.
now elim H1. destruct H1; discriminate.
Qed.

Theorem NZlt_irrefl : forall n : NZ, ~ n < n.
Proof.
intro n; unfold Nlt; now rewrite Ncompare_refl.
Qed.

Theorem NZlt_succ_r : forall n m : NZ, n < (NZsucc m) <-> n <= m.
Proof.
intros n m; unfold Nlt, Nle; destruct n as [| p]; destruct m as [| q]; simpl;
split; intro H; try reflexivity; try discriminate.
destruct p; simpl; intros; discriminate. elimtype False; now apply H.
apply -> Pcompare_p_Sq in H. destruct H as [H | H].
now rewrite H. now rewrite H, Pcompare_refl.
apply <- Pcompare_p_Sq. case_eq ((p ?= q)%positive Eq); intro H1.
right; now apply Pcompare_Eq_eq. now left. elimtype False; now apply H.
Qed.

Theorem NZmin_l : forall n m : N, n <= m -> NZmin n m = n.
Proof.
unfold NZmin, Nmin, Nle; intros n m H.
destruct (n ?= m); try reflexivity. now elim H.
Qed.

Theorem NZmin_r : forall n m : N, m <= n -> NZmin n m = m.
Proof.
unfold NZmin, Nmin, Nle; intros n m H.
case_eq (n ?= m); intro H1; try reflexivity.
now apply -> Ncompare_eq_correct.
rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
Qed.

Theorem NZmax_l : forall n m : N, m <= n -> NZmax n m = n.
Proof.
unfold NZmax, Nmax, Nle; intros n m H.
case_eq (n ?= m); intro H1; try reflexivity.
symmetry; now apply -> Ncompare_eq_correct.
rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
Qed.

Theorem NZmax_r : forall n m : N, n <= m -> NZmax n m = m.
Proof.
unfold NZmax, Nmax, Nle; intros n m H.
destruct (n ?= m); try reflexivity. now elim H.
Qed.

End NZOrdAxiomsMod.

Definition recursion (A : Type) (a : A) (f : N -> A -> A) (n : N) :=
  Nrect (fun _ => A) a f n.
Implicit Arguments recursion [A].

Theorem pred_0 : Npred N0 = N0.
Proof.
reflexivity.
Qed.

Theorem recursion_wd :
forall (A : Type) (Aeq : relation A),
  forall a a' : A, Aeq a a' ->
    forall f f' : N -> A -> A, fun2_eq NZeq Aeq Aeq f f' ->
      forall x x' : N, x = x' ->
        Aeq (recursion a f x) (recursion a' f' x').
Proof.
unfold fun2_wd, NZeq, fun2_eq.
intros A Aeq a a' Eaa' f f' Eff'.
intro x; pattern x; apply Nrect.
intros x' H; now rewrite <- H.
clear x.
intros x IH x' H; rewrite <- H.
unfold recursion in *. do 2 rewrite Nrect_step.
now apply Eff'; [| apply IH].
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : N -> A -> A), recursion a f N0 = a.
Proof.
intros A a f; unfold recursion; now rewrite Nrect_base.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
    Aeq a a -> fun2_wd NZeq Aeq Aeq f ->
      forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)).
Proof.
unfold NZeq, recursion, fun2_wd; intros A Aeq a f EAaa f_wd n; pattern n; apply Nrect.
rewrite Nrect_step; rewrite Nrect_base; now apply f_wd.
clear n; intro n; do 2 rewrite Nrect_step; intro IH. apply f_wd; [reflexivity|].
now rewrite Nrect_step.
Qed.

End NBinaryAxiomsMod.

Module Export NBinarySubPropMod := NSubPropFunct NBinaryAxiomsMod.

(* Some fun comparing the efficiency of the generic log defined
by strong (course-of-value) recursion and the log defined by recursion
on notation *)
(* Time Eval compute in (log 100000). *) (* 98 sec *)

(*
Fixpoint binposlog (p : positive) : N :=
match p with
| xH => 0
| xO p' => Nsucc (binposlog p')
| xI p' => Nsucc (binposlog p')
end.

Definition binlog (n : N) : N :=
match n with
| 0 => 0
| Npos p => binposlog p
end.
*)
(* Eval compute in (binlog 1000000000000000000). *) (* Works very fast *)