1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
(*i $Id: Nbasic.v 13323 2010-07-24 15:57:30Z herbelin $ i*)
Require Import ZArith.
Require Import BigNumPrelude.
Require Import Max.
Require Import DoubleType.
Require Import DoubleBase.
Require Import CyclicAxioms.
Require Import DoubleCyclic.
(* To compute the necessary height *)
Fixpoint plength (p: positive) : positive :=
match p with
xH => xH
| xO p1 => Psucc (plength p1)
| xI p1 => Psucc (plength p1)
end.
Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z).
intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z.
rewrite Zpower_exp; auto with zarith.
rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
intros p; elim p; simpl plength; auto.
intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI.
assert (tmp: (forall p, 2 * p = p + p)%Z);
try repeat rewrite tmp; auto with zarith.
intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1).
assert (tmp: (forall p, 2 * p = p + p)%Z);
try repeat rewrite tmp; auto with zarith.
rewrite Zpower_1_r; auto with zarith.
Qed.
Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p)))%Z.
intros p; case (Psucc_pred p); intros H1.
subst; simpl plength.
rewrite Zpower_1_r; auto with zarith.
pattern p at 1; rewrite <- H1.
rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
generalize (plength_correct (Ppred p)); auto with zarith.
Qed.
Definition Pdiv p q :=
match Zdiv (Zpos p) (Zpos q) with
Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
Z0 => q1
| _ => (Psucc q1)
end
| _ => xH
end.
Theorem Pdiv_le: forall p q,
Zpos p <= Zpos q * Zpos (Pdiv p q).
intros p q.
unfold Pdiv.
assert (H1: Zpos q > 0); auto with zarith.
assert (H1b: Zpos p >= 0); auto with zarith.
generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b).
generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Zdiv.
intros HH _; rewrite HH; rewrite Zmult_0_r; rewrite Zmult_1_r; simpl.
case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith.
intros q1 H2.
replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q).
2: pattern (Zpos p) at 2; rewrite H2; auto with zarith.
generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2;
case Zmod.
intros HH _; rewrite HH; auto with zarith.
intros r1 HH (_,HH1); rewrite HH; rewrite Zpos_succ_morphism.
unfold Zsucc; rewrite Zmult_plus_distr_r; auto with zarith.
intros r1 _ (HH,_); case HH; auto.
intros q1 HH; rewrite HH.
unfold Zge; simpl Zcompare; intros HH1; case HH1; auto.
Qed.
Definition is_one p := match p with xH => true | _ => false end.
Theorem is_one_one: forall p, is_one p = true -> p = xH.
intros p; case p; auto; intros p1 H1; discriminate H1.
Qed.
Definition get_height digits p :=
let r := Pdiv p digits in
if is_one r then xH else Psucc (plength (Ppred r)).
Theorem get_height_correct:
forall digits N,
Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
intros digits N.
unfold get_height.
assert (H1 := Pdiv_le N digits).
case_eq (is_one (Pdiv N digits)); intros H2.
rewrite (is_one_one _ H2) in H1.
rewrite Zmult_1_r in H1.
change (2^(1-1))%Z with 1; rewrite Zmult_1_r; auto.
clear H2.
apply Zle_trans with (1 := H1).
apply Zmult_le_compat_l; auto with zarith.
rewrite Zpos_succ_morphism; unfold Zsucc.
rewrite Zplus_comm; rewrite Zminus_plus.
apply plength_pred_correct.
Qed.
Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
fix zn2z_word_comm 2.
intros w n; case n.
reflexivity.
intros n0;simpl.
case (zn2z_word_comm w n0).
reflexivity.
Defined.
Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) :=
match n return forall w:Type, zn2z w -> word w (S n) with
| O => fun w x => x
| S m =>
let aux := extend m in
fun w x => WW W0 (aux w x)
end.
Section ExtendMax.
Open Scope nat_scope.
Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat :=
match n return (n + S m = S (n + m))%nat with
| 0 => refl_equal (S m)
| S n1 =>
let v := S (S n1 + m) in
eq_ind_r (fun n => S n = v) (refl_equal v) (plusnS n1 m)
end.
Fixpoint plusn0 n : n + 0 = n :=
match n return (n + 0 = n) with
| 0 => refl_equal 0
| S n1 =>
let v := S n1 in
eq_ind_r (fun n : nat => S n = v) (refl_equal v) (plusn0 n1)
end.
Fixpoint diff (m n: nat) {struct m}: nat * nat :=
match m, n with
O, n => (O, n)
| m, O => (m, O)
| S m1, S n1 => diff m1 n1
end.
Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n :=
match m return fst (diff m n) + n = max m n with
| 0 =>
match n return (n = max 0 n) with
| 0 => refl_equal _
| S n0 => refl_equal _
end
| S m1 =>
match n return (fst (diff (S m1) n) + n = max (S m1) n)
with
| 0 => plusn0 _
| S n1 =>
let v := fst (diff m1 n1) + n1 in
let v1 := fst (diff m1 n1) + S n1 in
eq_ind v (fun n => v1 = S n)
(eq_ind v1 (fun n => v1 = n) (refl_equal v1) (S v) (plusnS _ _))
_ (diff_l _ _)
end
end.
Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n :=
match m return (snd (diff m n) + m = max m n) with
| 0 =>
match n return (snd (diff 0 n) + 0 = max 0 n) with
| 0 => refl_equal _
| S _ => plusn0 _
end
| S m =>
match n return (snd (diff (S m) n) + S m = max (S m) n) with
| 0 => refl_equal (snd (diff (S m) 0) + S m)
| S n1 =>
let v := S (max m n1) in
eq_ind_r (fun n => n = v)
(eq_ind_r (fun n => S n = v)
(refl_equal v) (diff_r _ _)) (plusnS _ _)
end
end.
Variable w: Type.
Definition castm (m n: nat) (H: m = n) (x: word w (S m)):
(word w (S n)) :=
match H in (_ = y) return (word w (S y)) with
| refl_equal => x
end.
Variable m: nat.
Variable v: (word w (S m)).
Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) :=
match n return (word w (S (n + m))) with
| O => v
| S n1 => WW W0 (extend_tr n1)
end.
End ExtendMax.
Implicit Arguments extend_tr[w m].
Implicit Arguments castm[w m n].
Section Reduce.
Variable w : Type.
Variable nT : Type.
Variable N0 : nT.
Variable eq0 : w -> bool.
Variable reduce_n : w -> nT.
Variable zn2z_to_Nt : zn2z w -> nT.
Definition reduce_n1 (x:zn2z w) :=
match x with
| W0 => N0
| WW xh xl =>
if eq0 xh then reduce_n xl
else zn2z_to_Nt x
end.
End Reduce.
Section ReduceRec.
Variable w : Type.
Variable nT : Type.
Variable N0 : nT.
Variable reduce_1n : zn2z w -> nT.
Variable c : forall n, word w (S n) -> nT.
Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
match n return word w (S n) -> nT with
| O => reduce_1n
| S m => fun x =>
match x with
| W0 => N0
| WW xh xl =>
match xh with
| W0 => @reduce_n m xl
| _ => @c (S m) x
end
end
end.
End ReduceRec.
Definition opp_compare cmp :=
match cmp with
| Lt => Gt
| Eq => Eq
| Gt => Lt
end.
Section CompareRec.
Variable wm w : Type.
Variable w_0 : w.
Variable compare : w -> w -> comparison.
Variable compare0_m : wm -> comparison.
Variable compare_m : wm -> w -> comparison.
Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
match n return word wm n -> comparison with
| O => compare0_m
| S m => fun x =>
match x with
| W0 => Eq
| WW xh xl =>
match compare0_mn m xh with
| Eq => compare0_mn m xl
| r => Lt
end
end
end.
Variable wm_base: positive.
Variable wm_to_Z: wm -> Z.
Variable w_to_Z: w -> Z.
Variable w_to_Z_0: w_to_Z w_0 = 0.
Variable spec_compare0_m: forall x,
match compare0_m x with
Eq => w_to_Z w_0 = wm_to_Z x
| Lt => w_to_Z w_0 < wm_to_Z x
| Gt => w_to_Z w_0 > wm_to_Z x
end.
Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.
Let double_to_Z := double_to_Z wm_base wm_to_Z.
Let double_wB := double_wB wm_base.
Lemma base_xO: forall n, base (xO n) = (base n)^2.
Proof.
intros n1; unfold base.
rewrite (Zpos_xO n1); rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith.
Qed.
Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
(spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).
Lemma spec_compare0_mn: forall n x,
match compare0_mn n x with
Eq => 0 = double_to_Z n x
| Lt => 0 < double_to_Z n x
| Gt => 0 > double_to_Z n x
end.
Proof.
intros n; elim n; clear n; auto.
intros x; generalize (spec_compare0_m x); rewrite w_to_Z_0; auto.
intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto.
intros xh xl.
generalize (Hrec xh); case compare0_mn; auto.
generalize (Hrec xl); case compare0_mn; auto.
simpl double_to_Z; intros H1 H2; rewrite H1; rewrite <- H2; auto.
simpl double_to_Z; intros H1 H2; rewrite <- H2; auto.
case (double_to_Z_pos n xl); auto with zarith.
intros H1; simpl double_to_Z.
set (u := DoubleBase.double_wB wm_base n).
case (double_to_Z_pos n xl); intros H2 H3.
assert (0 < u); auto with zarith.
unfold u, DoubleBase.double_wB, base; auto with zarith.
change 0 with (0 + 0); apply Zplus_lt_le_compat; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
case (double_to_Z_pos n xh); auto with zarith.
Qed.
Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
match n return word wm n -> w -> comparison with
| O => compare_m
| S m => fun x y =>
match x with
| W0 => compare w_0 y
| WW xh xl =>
match compare0_mn m xh with
| Eq => compare_mn_1 m xl y
| r => Gt
end
end
end.
Variable spec_compare: forall x y,
match compare x y with
Eq => w_to_Z x = w_to_Z y
| Lt => w_to_Z x < w_to_Z y
| Gt => w_to_Z x > w_to_Z y
end.
Variable spec_compare_m: forall x y,
match compare_m x y with
Eq => wm_to_Z x = w_to_Z y
| Lt => wm_to_Z x < w_to_Z y
| Gt => wm_to_Z x > w_to_Z y
end.
Variable wm_base_lt: forall x,
0 <= w_to_Z x < base (wm_base).
Let double_wB_lt: forall n x,
0 <= w_to_Z x < (double_wB n).
Proof.
intros n x; elim n; simpl; auto; clear n.
intros n (H0, H); split; auto.
apply Zlt_le_trans with (1:= H).
unfold double_wB, DoubleBase.double_wB; simpl.
rewrite base_xO.
set (u := base (double_digits wm_base n)).
assert (0 < u).
unfold u, base; auto with zarith.
replace (u^2) with (u * u); simpl; auto with zarith.
apply Zle_trans with (1 * u); auto with zarith.
unfold Zpower_pos; simpl; ring.
Qed.
Lemma spec_compare_mn_1: forall n x y,
match compare_mn_1 n x y with
Eq => double_to_Z n x = w_to_Z y
| Lt => double_to_Z n x < w_to_Z y
| Gt => double_to_Z n x > w_to_Z y
end.
Proof.
intros n; elim n; simpl; auto; clear n.
intros n Hrec x; case x; clear x; auto.
intros y; generalize (spec_compare w_0 y); rewrite w_to_Z_0; case compare; auto.
intros xh xl y; simpl; generalize (spec_compare0_mn n xh); case compare0_mn; intros H1b.
rewrite <- H1b; rewrite Zmult_0_l; rewrite Zplus_0_l; auto.
apply Hrec.
apply Zlt_gt.
case (double_wB_lt n y); intros _ H0.
apply Zlt_le_trans with (1:= H0).
fold double_wB.
case (double_to_Z_pos n xl); intros H1 H2.
apply Zle_trans with (double_to_Z n xh * double_wB n); auto with zarith.
apply Zle_trans with (1 * double_wB n); auto with zarith.
case (double_to_Z_pos n xh); auto with zarith.
Qed.
End CompareRec.
Section AddS.
Variable w wm : Type.
Variable incr : wm -> carry wm.
Variable addr : w -> wm -> carry wm.
Variable injr : w -> zn2z wm.
Variable w_0 u: w.
Fixpoint injs (n:nat): word w (S n) :=
match n return (word w (S n)) with
O => WW w_0 u
| S n1 => (WW W0 (injs n1))
end.
Definition adds x y :=
match y with
W0 => C0 (injr x)
| WW hy ly => match addr x ly with
C0 z => C0 (WW hy z)
| C1 z => match incr hy with
C0 z1 => C0 (WW z1 z)
| C1 z1 => C1 (WW z1 z)
end
end
end.
End AddS.
Lemma spec_opp: forall u x y,
match u with
| Eq => y = x
| Lt => y < x
| Gt => y > x
end ->
match opp_compare u with
| Eq => x = y
| Lt => x < y
| Gt => x > y
end.
Proof.
intros u x y; case u; simpl; auto with zarith.
Qed.
Fixpoint length_pos x :=
match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.
Theorem length_pos_lt: forall x y,
(length_pos x < length_pos y)%nat -> Zpos x < Zpos y.
Proof.
intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac];
intros y; case y; clear y; intros y1 H || intros H; simpl length_pos;
try (rewrite (Zpos_xI x1) || rewrite (Zpos_xO x1));
try (rewrite (Zpos_xI y1) || rewrite (Zpos_xO y1));
try (inversion H; fail);
try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith);
assert (0 < Zpos y1); auto with zarith; red; auto.
Qed.
Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x.
Proof.
intros A B f g x H; rewrite H; auto.
Qed.
Section SimplOp.
Variable w: Type.
Theorem digits_zop: forall w (x: znz_op w),
znz_digits (mk_zn2z_op x) = xO (znz_digits x).
intros ww x; auto.
Qed.
Theorem digits_kzop: forall w (x: znz_op w),
znz_digits (mk_zn2z_op_karatsuba x) = xO (znz_digits x).
intros ww x; auto.
Qed.
Theorem make_zop: forall w (x: znz_op w),
znz_to_Z (mk_zn2z_op x) =
fun z => match z with
W0 => 0
| WW xh xl => znz_to_Z x xh * base (znz_digits x)
+ znz_to_Z x xl
end.
intros ww x; auto.
Qed.
Theorem make_kzop: forall w (x: znz_op w),
znz_to_Z (mk_zn2z_op_karatsuba x) =
fun z => match z with
W0 => 0
| WW xh xl => znz_to_Z x xh * base (znz_digits x)
+ znz_to_Z x xl
end.
intros ww x; auto.
Qed.
End SimplOp.
|