summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NPow.v
blob: 07aee9c6fbb98d590f8149987d1951cbec601825 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Properties of the power function *)

Require Import Bool NAxioms NSub NParity NZPow.

(** Derived properties of power, specialized on natural numbers *)

Module Type NPowProp
 (Import A : NAxiomsSig')
 (Import B : NSubProp A)
 (Import C : NParityProp A B).

 Module Import Private_NZPow := Nop <+ NZPowProp A A B.

Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l.
Ltac wrap l := intros; apply l; auto'.

Lemma pow_succ_r' : forall a b, a^(S b) == a * a^b.
Proof. wrap pow_succ_r. Qed.

(** Power and basic constants *)

Lemma pow_0_l : forall a, a~=0 -> 0^a == 0.
Proof. wrap pow_0_l. Qed.

Definition pow_1_r : forall a, a^1 == a
 := pow_1_r.

Lemma pow_1_l : forall a, 1^a == 1.
Proof. wrap pow_1_l. Qed.

Definition pow_2_r : forall a, a^2 == a*a
 := pow_2_r.

(** Power and addition, multiplication *)

Lemma pow_add_r : forall a b c, a^(b+c) == a^b * a^c.
Proof. wrap pow_add_r. Qed.

Lemma pow_mul_l : forall a b c, (a*b)^c == a^c * b^c.
Proof. wrap pow_mul_l. Qed.

Lemma pow_mul_r : forall a b c, a^(b*c) == (a^b)^c.
Proof. wrap pow_mul_r. Qed.

(** Power and nullity *)

Lemma pow_eq_0 : forall a b, b~=0 -> a^b == 0 -> a == 0.
Proof. intros. apply (pow_eq_0 a b); trivial. auto'. Qed.

Lemma pow_nonzero : forall a b, a~=0 -> a^b ~= 0.
Proof. wrap pow_nonzero. Qed.

Lemma pow_eq_0_iff : forall a b, a^b == 0 <-> b~=0 /\ a==0.
Proof.
 intros a b. split.
 rewrite pow_eq_0_iff. intros [H |[H H']].
  generalize (le_0_l b); order. split; order.
 intros (Hb,Ha). rewrite Ha. now apply pow_0_l'.
Qed.

(** Monotonicity *)

Lemma pow_lt_mono_l : forall a b c, c~=0 -> a<b -> a^c < b^c.
Proof. wrap pow_lt_mono_l. Qed.

Lemma pow_le_mono_l : forall a b c, a<=b -> a^c <= b^c.
Proof. wrap pow_le_mono_l. Qed.

Lemma pow_gt_1 : forall a b, 1<a -> b~=0 -> 1<a^b.
Proof. wrap pow_gt_1. Qed.

Lemma pow_lt_mono_r : forall a b c, 1<a -> b<c -> a^b < a^c.
Proof. wrap pow_lt_mono_r. Qed.

(** NB: since 0^0 > 0^1, the following result isn't valid with a=0 *)

Lemma pow_le_mono_r : forall a b c, a~=0 -> b<=c -> a^b <= a^c.
Proof. wrap pow_le_mono_r. Qed.

Lemma pow_le_mono : forall a b c d, a~=0 -> a<=c -> b<=d ->
 a^b <= c^d.
Proof. wrap pow_le_mono. Qed.

Definition pow_lt_mono : forall a b c d, 0<a<c -> 0<b<d ->
 a^b < c^d
 := pow_lt_mono.

(** Injectivity *)

Lemma pow_inj_l : forall a b c, c~=0 -> a^c == b^c -> a == b.
Proof. intros; eapply pow_inj_l; eauto; auto'. Qed.

Lemma pow_inj_r : forall a b c, 1<a -> a^b == a^c -> b == c.
Proof. intros; eapply pow_inj_r; eauto; auto'. Qed.

(** Monotonicity results, both ways *)

Lemma pow_lt_mono_l_iff : forall a b c, c~=0 ->
  (a<b <-> a^c < b^c).
Proof. wrap pow_lt_mono_l_iff. Qed.

Lemma pow_le_mono_l_iff : forall a b c, c~=0 ->
  (a<=b <-> a^c <= b^c).
Proof. wrap pow_le_mono_l_iff. Qed.

Lemma pow_lt_mono_r_iff : forall a b c, 1<a ->
  (b<c <-> a^b < a^c).
Proof. wrap pow_lt_mono_r_iff. Qed.

Lemma pow_le_mono_r_iff : forall a b c, 1<a ->
  (b<=c <-> a^b <= a^c).
Proof. wrap pow_le_mono_r_iff. Qed.

(** For any a>1, the a^x function is above the identity function *)

Lemma pow_gt_lin_r : forall a b, 1<a -> b < a^b.
Proof. wrap pow_gt_lin_r. Qed.

(** Someday, we should say something about the full Newton formula.
    In the meantime, we can at least provide some inequalities about
    (a+b)^c.
*)

Lemma pow_add_lower : forall a b c, c~=0 ->
  a^c + b^c <= (a+b)^c.
Proof. wrap pow_add_lower. Qed.

(** This upper bound can also be seen as a convexity proof for x^c :
    image of (a+b)/2 is below the middle of the images of a and b
*)

Lemma pow_add_upper : forall a b c, c~=0 ->
  (a+b)^c <= 2^(pred c) * (a^c + b^c).
Proof. wrap pow_add_upper. Qed.

(** Power and parity *)

Lemma even_pow : forall a b, b~=0 -> even (a^b) = even a.
Proof.
 intros a b Hb. rewrite neq_0_lt_0 in Hb.
 apply lt_ind with (4:=Hb). solve_proper.
 now nzsimpl.
 clear b Hb. intros b Hb IH.
 rewrite pow_succ_r', even_mul, IH. now destruct (even a).
Qed.

Lemma odd_pow : forall a b, b~=0 -> odd (a^b) = odd a.
Proof.
 intros. now rewrite <- !negb_even, even_pow.
Qed.

End NPowProp.