1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
(*i $Id$ i*)
Require Export NAddOrder.
Module NMulOrderPropFunct (Import N : NAxiomsSig').
Include NAddOrderPropFunct N.
(** Theorems that are either not valid on Z or have different proofs
on N and Z *)
Theorem square_lt_mono : forall n m, n < m <-> n * n < m * m.
Proof.
intros n m; split; intro;
[apply square_lt_mono_nonneg | apply square_lt_simpl_nonneg];
try assumption; apply le_0_l.
Qed.
Theorem square_le_mono : forall n m, n <= m <-> n * n <= m * m.
Proof.
intros n m; split; intro;
[apply square_le_mono_nonneg | apply square_le_simpl_nonneg];
try assumption; apply le_0_l.
Qed.
Theorem mul_le_mono_l : forall n m p, n <= m -> p * n <= p * m.
Proof.
intros; apply mul_le_mono_nonneg_l. apply le_0_l. assumption.
Qed.
Theorem mul_le_mono_r : forall n m p, n <= m -> n * p <= m * p.
Proof.
intros; apply mul_le_mono_nonneg_r. apply le_0_l. assumption.
Qed.
Theorem mul_lt_mono : forall n m p q, n < m -> p < q -> n * p < m * q.
Proof.
intros; apply mul_lt_mono_nonneg; try assumption; apply le_0_l.
Qed.
Theorem mul_le_mono : forall n m p q, n <= m -> p <= q -> n * p <= m * q.
Proof.
intros; apply mul_le_mono_nonneg; try assumption; apply le_0_l.
Qed.
Theorem lt_0_mul' : forall n m, n * m > 0 <-> n > 0 /\ m > 0.
Proof.
intros n m; split; [intro H | intros [H1 H2]].
apply -> lt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split.
false_hyp H1 nlt_0_r.
now apply mul_pos_pos.
Qed.
Notation mul_pos := lt_0_mul' (only parsing).
Theorem eq_mul_1 : forall n m, n * m == 1 <-> n == 1 /\ m == 1.
Proof.
intros n m.
split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l].
intro H; destruct (lt_trichotomy n 1) as [H1 | [H1 | H1]].
apply -> lt_1_r in H1. rewrite H1, mul_0_l in H. false_hyp H neq_0_succ.
rewrite H1, mul_1_l in H; now split.
destruct (eq_0_gt_0_cases m) as [H2 | H2].
rewrite H2, mul_0_r in H; false_hyp H neq_0_succ.
apply -> (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1.
assert (H3 : 1 < n * m) by now apply (lt_1_l m).
rewrite H in H3; false_hyp H3 lt_irrefl.
Qed.
End NMulOrderPropFunct.
|