summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NAxioms.v
blob: 061da038562c153512985b7d78f6ae8ef9935150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export Bool NZAxioms NZParity NZPow NZSqrt NZLog NZDiv NZGcd NZBits.

(** From [NZ], we obtain natural numbers just by stating that [pred 0] == 0 *)

Module Type NAxiom (Import NZ : NZDomainSig').
 Axiom pred_0 : P 0 == 0.
End NAxiom.

Module Type NAxiomsMiniSig := NZOrdAxiomsSig <+ NAxiom.
Module Type NAxiomsMiniSig' := NZOrdAxiomsSig' <+ NAxiom.

(** Let's now add some more functions and their specification *)

(** Division Function : we reuse NZDiv.DivMod and NZDiv.NZDivCommon,
    and add to that a N-specific constraint. *)

Module Type NDivSpecific (Import N : NAxiomsMiniSig')(Import DM : DivMod' N).
 Axiom mod_upper_bound : forall a b, b ~= 0 -> a mod b < b.
End NDivSpecific.

(** For all other functions, the NZ axiomatizations are enough. *)

(** We now group everything together. *)

Module Type NAxiomsSig := NAxiomsMiniSig <+ OrderFunctions
  <+ NZParity.NZParity <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2
  <+ NZGcd.NZGcd <+ NZDiv.NZDiv <+ NZBits.NZBits <+ NZSquare.

Module Type NAxiomsSig' := NAxiomsMiniSig' <+ OrderFunctions'
  <+ NZParity.NZParity <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2
  <+ NZGcd.NZGcd' <+ NZDiv.NZDiv' <+ NZBits.NZBits' <+ NZSquare.


(** It could also be interesting to have a constructive recursor function. *)

Module Type NAxiomsRec (Import NZ : NZDomainSig').

Parameter Inline recursion : forall {A : Type}, A -> (t -> A -> A) -> t -> A.

Declare Instance recursion_wd {A : Type} (Aeq : relation A) :
 Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.

Axiom recursion_0 :
  forall {A} (a : A) (f : t -> A -> A), recursion a f 0 = a.

Axiom recursion_succ :
  forall {A} (Aeq : relation A) (a : A) (f : t -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n, Aeq (recursion a f (S n)) (f n (recursion a f n)).

End NAxiomsRec.

Module Type NAxiomsRecSig := NAxiomsMiniSig <+ NAxiomsRec.
Module Type NAxiomsRecSig' := NAxiomsMiniSig' <+ NAxiomsRec.

Module Type NAxiomsFullSig := NAxiomsSig <+ NAxiomsRec.
Module Type NAxiomsFullSig' := NAxiomsSig' <+ NAxiomsRec.