summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NAddOrder.v
blob: 0ce04e54ebc1884b34ade2525ea41583aba11f64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id$ i*)

Require Export NOrder.

Module NAddOrderPropFunct (Import N : NAxiomsSig').
Include NOrderPropFunct N.

(** Theorems true for natural numbers, not for integers *)

Theorem le_add_r : forall n m, n <= n + m.
Proof.
intro n; induct m.
rewrite add_0_r; now apply eq_le_incl.
intros m IH. rewrite add_succ_r; now apply le_le_succ_r.
Qed.

Theorem lt_lt_add_r : forall n m p, n < m -> n < m + p.
Proof.
intros n m p H; rewrite <- (add_0_r n).
apply add_lt_le_mono; [assumption | apply le_0_l].
Qed.

Theorem lt_lt_add_l : forall n m p, n < m -> n < p + m.
Proof.
intros n m p; rewrite add_comm; apply lt_lt_add_r.
Qed.

Theorem add_pos_l : forall n m, 0 < n -> 0 < n + m.
Proof.
intros; apply add_pos_nonneg. assumption. apply le_0_l.
Qed.

Theorem add_pos_r : forall n m, 0 < m -> 0 < n + m.
Proof.
intros; apply add_nonneg_pos. apply le_0_l. assumption.
Qed.

End NAddOrderPropFunct.