summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZOrder.v
blob: 8cf5b26fb1dfebc64e1e7b12c45d04f3808ad9a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Import NZAxioms NZBase Decidable OrdersTac.

Module Type NZOrderProp
 (Import NZ : NZOrdSig')(Import NZBase : NZBaseProp NZ).

Instance le_wd : Proper (eq==>eq==>iff) le.
Proof.
intros n n' Hn m m' Hm. now rewrite <- !lt_succ_r, Hn, Hm.
Qed.

Ltac le_elim H := rewrite lt_eq_cases in H; destruct H as [H | H].

Theorem lt_le_incl : forall n m, n < m -> n <= m.
Proof.
intros. apply lt_eq_cases. now left.
Qed.

Theorem le_refl : forall n, n <= n.
Proof.
intro. apply lt_eq_cases. now right.
Qed.

Theorem lt_succ_diag_r : forall n, n < S n.
Proof.
intro n. rewrite lt_succ_r. apply le_refl.
Qed.

Theorem le_succ_diag_r : forall n, n <= S n.
Proof.
intro; apply lt_le_incl; apply lt_succ_diag_r.
Qed.

Theorem neq_succ_diag_l : forall n, S n ~= n.
Proof.
intros n H. apply (lt_irrefl n). rewrite <- H at 2. apply lt_succ_diag_r.
Qed.

Theorem neq_succ_diag_r : forall n, n ~= S n.
Proof.
intro n; apply neq_sym, neq_succ_diag_l.
Qed.

Theorem nlt_succ_diag_l : forall n, ~ S n < n.
Proof.
intros n H. apply (lt_irrefl (S n)). rewrite lt_succ_r. now apply lt_le_incl.
Qed.

Theorem nle_succ_diag_l : forall n, ~ S n <= n.
Proof.
intros n H; le_elim H.
false_hyp H nlt_succ_diag_l. false_hyp H neq_succ_diag_l.
Qed.

Theorem le_succ_l : forall n m, S n <= m <-> n < m.
Proof.
intro n; nzinduct m n.
split; intro H. false_hyp H nle_succ_diag_l. false_hyp H lt_irrefl.
intro m.
rewrite (lt_eq_cases (S n) (S m)), !lt_succ_r, (lt_eq_cases n m), succ_inj_wd.
rewrite or_cancel_r.
reflexivity.
intros LE EQ; rewrite EQ in LE; false_hyp LE nle_succ_diag_l.
intros LT EQ; rewrite EQ in LT; false_hyp LT lt_irrefl.
Qed.

(** Trichotomy *)

Theorem le_gt_cases : forall n m, n <= m \/ n > m.
Proof.
intros n m; nzinduct n m.
left; apply le_refl.
intro n. rewrite lt_succ_r, le_succ_l, !lt_eq_cases. intuition.
Qed.

Theorem lt_trichotomy : forall n m,  n < m \/ n == m \/ m < n.
Proof.
intros n m. generalize (le_gt_cases n m); rewrite lt_eq_cases; tauto.
Qed.

Notation lt_eq_gt_cases := lt_trichotomy (only parsing).

(** Asymmetry and transitivity. *)

Theorem lt_asymm : forall n m, n < m -> ~ m < n.
Proof.
intros n m; nzinduct n m.
intros H; false_hyp H lt_irrefl.
intro n; split; intros H H1 H2.
apply lt_succ_r in H2. le_elim H2.
apply H; auto. apply le_succ_l. now apply lt_le_incl.
rewrite H2 in H1. false_hyp H1 nlt_succ_diag_l.
apply le_succ_l in H1. le_elim H1.
apply H; auto. rewrite lt_succ_r. now apply lt_le_incl.
rewrite <- H1 in H2. false_hyp H2 nlt_succ_diag_l.
Qed.

Notation lt_ngt := lt_asymm (only parsing).

Theorem lt_trans : forall n m p, n < m -> m < p -> n < p.
Proof.
intros n m p; nzinduct p m.
intros _ H; false_hyp H lt_irrefl.
intro p. rewrite 2 lt_succ_r.
split; intros H H1 H2.
apply lt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1].
assert (n <= p) as H3 by (auto using lt_le_incl).
le_elim H3. assumption. rewrite <- H3 in H2.
elim (lt_asymm n m); auto.
Qed.

Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p.
Proof.
intros n m p. rewrite 3 lt_eq_cases.
intros [LT|EQ] [LT'|EQ']; try rewrite EQ; try rewrite <- EQ';
 generalize (lt_trans n m p); auto with relations.
Qed.

(** Some type classes about order *)

Instance lt_strorder : StrictOrder lt.
Proof. split. exact lt_irrefl. exact lt_trans. Qed.

Instance le_preorder : PreOrder le.
Proof. split. exact le_refl. exact le_trans. Qed.

Instance le_partialorder : PartialOrder _ le.
Proof.
intros x y. compute. split.
intro EQ; now rewrite EQ.
rewrite 2 lt_eq_cases. intuition. elim (lt_irrefl x). now transitivity y.
Qed.

(** We know enough now to benefit from the generic [order] tactic. *)

Definition lt_compat := lt_wd.
Definition lt_total := lt_trichotomy.
Definition le_lteq := lt_eq_cases.

Module Private_OrderTac.
Module Elts <: TotalOrder.
 Definition t := t.
 Definition eq := eq.
 Definition lt := lt.
 Definition le := le.
 Definition eq_equiv := eq_equiv.
 Definition lt_strorder := lt_strorder.
 Definition lt_compat := lt_compat.
 Definition lt_total := lt_total.
 Definition le_lteq := le_lteq.
End Elts.
Module Tac := !MakeOrderTac Elts.
End Private_OrderTac.
Ltac order := Private_OrderTac.Tac.order.

(** Some direct consequences of [order]. *)

Theorem lt_neq : forall n m, n < m -> n ~= m.
Proof. order. Qed.

Theorem le_neq : forall n m, n < m <-> n <= m /\ n ~= m.
Proof. intuition order. Qed.

Theorem eq_le_incl : forall n m, n == m -> n <= m.
Proof. order. Qed.

Lemma lt_stepl : forall x y z, x < y -> x == z -> z < y.
Proof. order. Qed.

Lemma lt_stepr : forall x y z, x < y -> y == z -> x < z.
Proof. order. Qed.

Lemma le_stepl : forall x y z, x <= y -> x == z -> z <= y.
Proof. order. Qed.

Lemma le_stepr : forall x y z, x <= y -> y == z -> x <= z.
Proof. order. Qed.

Declare Left  Step lt_stepl.
Declare Right Step lt_stepr.
Declare Left  Step le_stepl.
Declare Right Step le_stepr.

Theorem le_lt_trans : forall n m p, n <= m -> m < p -> n < p.
Proof. order. Qed.

Theorem lt_le_trans : forall n m p, n < m -> m <= p -> n < p.
Proof. order. Qed.

Theorem le_antisymm : forall n m, n <= m -> m <= n -> n == m.
Proof. order. Qed.

(** More properties of [<] and [<=] with respect to [S] and [0]. *)

Theorem le_succ_r : forall n m, n <= S m <-> n <= m \/ n == S m.
Proof.
intros n m; rewrite lt_eq_cases. now rewrite lt_succ_r.
Qed.

Theorem lt_succ_l : forall n m, S n < m -> n < m.
Proof.
intros n m H; apply le_succ_l; order.
Qed.

Theorem le_le_succ_r : forall n m, n <= m -> n <= S m.
Proof.
intros n m LE. apply lt_succ_r in LE. order.
Qed.

Theorem lt_lt_succ_r : forall n m, n < m -> n < S m.
Proof.
intros. rewrite lt_succ_r. order.
Qed.

Theorem succ_lt_mono : forall n m, n < m <-> S n < S m.
Proof.
intros n m. rewrite <- le_succ_l. symmetry. apply lt_succ_r.
Qed.

Theorem succ_le_mono : forall n m, n <= m <-> S n <= S m.
Proof.
intros n m. now rewrite 2 lt_eq_cases, <- succ_lt_mono, succ_inj_wd.
Qed.

Theorem lt_0_1 : 0 < 1.
Proof.
rewrite one_succ. apply lt_succ_diag_r.
Qed.

Theorem le_0_1 : 0 <= 1.
Proof.
apply lt_le_incl, lt_0_1.
Qed.

Theorem lt_1_2 : 1 < 2.
Proof.
rewrite two_succ. apply lt_succ_diag_r.
Qed.

Theorem lt_0_2 : 0 < 2.
Proof.
transitivity 1. apply lt_0_1. apply lt_1_2.
Qed.

Theorem le_0_2 : 0 <= 2.
Proof.
apply lt_le_incl, lt_0_2.
Qed.

(** The order tactic enriched with some knowledge of 0,1,2 *)

Ltac order' := generalize lt_0_1 lt_1_2; order.

Theorem lt_1_l : forall n m, 0 < n -> n < m -> 1 < m.
Proof.
intros n m H1 H2. rewrite <- le_succ_l, <- one_succ in H1. order.
Qed.

(** More Trichotomy, decidability and double negation elimination. *)

(** The following theorem is cleary redundant, but helps not to
remember whether one has to say le_gt_cases or lt_ge_cases *)

Theorem lt_ge_cases : forall n m, n < m \/ n >= m.
Proof.
intros n m; destruct (le_gt_cases m n); intuition order.
Qed.

Theorem le_ge_cases : forall n m, n <= m \/ n >= m.
Proof.
intros n m; destruct (le_gt_cases n m); intuition order.
Qed.

Theorem lt_gt_cases : forall n m, n ~= m <-> n < m \/ n > m.
Proof.
intros n m; destruct (lt_trichotomy n m); intuition order.
Qed.

(** Decidability of equality, even though true in each finite ring, does not
have a uniform proof. Otherwise, the proof for two fixed numbers would
reduce to a normal form that will say if the numbers are equal or not,
which cannot be true in all finite rings. Therefore, we prove decidability
in the presence of order. *)

Theorem eq_decidable : forall n m, decidable (n == m).
Proof.
intros n m; destruct (lt_trichotomy n m) as [ | [ | ]];
 (right; order) || (left; order).
Qed.

(** DNE stands for double-negation elimination *)

Theorem eq_dne : forall n m, ~ ~ n == m <-> n == m.
Proof.
intros n m; split; intro H.
destruct (eq_decidable n m) as [H1 | H1].
assumption. false_hyp H1 H.
intro H1; now apply H1.
Qed.

Theorem le_ngt : forall n m, n <= m <-> ~ n > m.
Proof. intuition order. Qed.

(** Redundant but useful *)

Theorem nlt_ge : forall n m, ~ n < m <-> n >= m.
Proof. intuition order. Qed.

Theorem lt_decidable : forall n m, decidable (n < m).
Proof.
intros n m; destruct (le_gt_cases m n); [right|left]; order.
Qed.

Theorem lt_dne : forall n m, ~ ~ n < m <-> n < m.
Proof.
intros n m; split; intro H.
destruct (lt_decidable n m) as [H1 | H1]; [assumption | false_hyp H1 H].
intro H1; false_hyp H H1.
Qed.

Theorem nle_gt : forall n m, ~ n <= m <-> n > m.
Proof. intuition order. Qed.

(** Redundant but useful *)

Theorem lt_nge : forall n m, n < m <-> ~ n >= m.
Proof. intuition order. Qed.

Theorem le_decidable : forall n m, decidable (n <= m).
Proof.
intros n m; destruct (le_gt_cases n m); [left|right]; order.
Qed.

Theorem le_dne : forall n m, ~ ~ n <= m <-> n <= m.
Proof.
intros n m; split; intro H.
destruct (le_decidable n m) as [H1 | H1]; [assumption | false_hyp H1 H].
intro H1; false_hyp H H1.
Qed.

Theorem nlt_succ_r : forall n m, ~ m < S n <-> n < m.
Proof.
intros n m; rewrite lt_succ_r. intuition order.
Qed.

(** The difference between integers and natural numbers is that for
every integer there is a predecessor, which is not true for natural
numbers. However, for both classes, every number that is bigger than
some other number has a predecessor. The proof of this fact by regular
induction does not go through, so we need to use strong
(course-of-value) induction. *)

Lemma lt_exists_pred_strong :
  forall z n m, z < m -> m <= n -> exists k, m == S k /\ z <= k.
Proof.
intro z; nzinduct n z.
order.
intro n; split; intros IH m H1 H2.
apply le_succ_r in H2. destruct H2 as [H2 | H2].
now apply IH. exists n. now split; [| rewrite <- lt_succ_r; rewrite <- H2].
apply IH. assumption. now apply le_le_succ_r.
Qed.

Theorem lt_exists_pred :
  forall z n, z < n -> exists k, n == S k /\ z <= k.
Proof.
intros z n H; apply lt_exists_pred_strong with (z := z) (n := n).
assumption. apply le_refl.
Qed.

Lemma lt_succ_pred : forall z n, z < n -> S (P n) == n.
Proof.
 intros z n H.
 destruct (lt_exists_pred _ _ H) as (n' & EQ & LE).
 rewrite EQ. now rewrite pred_succ.
Qed.

(** Stronger variant of induction with assumptions n >= 0 (n < 0)
in the induction step *)

Section Induction.

Variable A : t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.

Section Center.

Variable z : t. (* A z is the basis of induction *)

Section RightInduction.

Let A' (n : t) := forall m, z <= m -> m < n -> A m.
Let right_step :=   forall n, z <= n -> A n -> A (S n).
Let right_step' :=  forall n, z <= n -> A' n -> A n.
Let right_step'' := forall n, A' n <-> A' (S n).

Lemma rs_rs' :  A z -> right_step -> right_step'.
Proof.
intros Az RS n H1 H2.
le_elim H1. apply lt_exists_pred in H1. destruct H1 as [k [H3 H4]].
rewrite H3. apply RS; trivial. apply H2; trivial.
rewrite H3; apply lt_succ_diag_r.
rewrite <- H1; apply Az.
Qed.

Lemma rs'_rs'' : right_step' -> right_step''.
Proof.
intros RS' n; split; intros H1 m H2 H3.
apply lt_succ_r in H3; le_elim H3;
[now apply H1 | rewrite H3 in *; now apply RS'].
apply H1; [assumption | now apply lt_lt_succ_r].
Qed.

Lemma rbase : A' z.
Proof.
intros m H1 H2. apply le_ngt in H1. false_hyp H2 H1.
Qed.

Lemma A'A_right : (forall n, A' n) -> forall n, z <= n -> A n.
Proof.
intros H1 n H2. apply H1 with (n := S n); [assumption | apply lt_succ_diag_r].
Qed.

Theorem strong_right_induction: right_step' -> forall n, z <= n -> A n.
Proof.
intro RS'; apply A'A_right; unfold A'; nzinduct n z;
[apply rbase | apply rs'_rs''; apply RS'].
Qed.

Theorem right_induction : A z -> right_step -> forall n, z <= n -> A n.
Proof.
intros Az RS; apply strong_right_induction; now apply rs_rs'.
Qed.

Theorem right_induction' :
  (forall n, n <= z -> A n) -> right_step -> forall n, A n.
Proof.
intros L R n.
destruct (lt_trichotomy n z) as [H | [H | H]].
apply L; now apply lt_le_incl.
apply L; now apply eq_le_incl.
apply right_induction. apply L; now apply eq_le_incl. assumption.
now apply lt_le_incl.
Qed.

Theorem strong_right_induction' :
  (forall n, n <= z -> A n) -> right_step' -> forall n, A n.
Proof.
intros L R n.
destruct (lt_trichotomy n z) as [H | [H | H]].
apply L; now apply lt_le_incl.
apply L; now apply eq_le_incl.
apply strong_right_induction. assumption. now apply lt_le_incl.
Qed.

End RightInduction.

Section LeftInduction.

Let A' (n : t) := forall m, m <= z -> n <= m -> A m.
Let left_step :=   forall n, n < z -> A (S n) -> A n.
Let left_step' :=  forall n, n <= z -> A' (S n) -> A n.
Let left_step'' := forall n, A' n <-> A' (S n).

Lemma ls_ls' :  A z -> left_step -> left_step'.
Proof.
intros Az LS n H1 H2. le_elim H1.
apply LS; trivial. apply H2; [now apply le_succ_l | now apply eq_le_incl].
rewrite H1; apply Az.
Qed.

Lemma ls'_ls'' : left_step' -> left_step''.
Proof.
intros LS' n; split; intros H1 m H2 H3.
apply le_succ_l in H3. apply lt_le_incl in H3. now apply H1.
le_elim H3.
apply le_succ_l in H3. now apply H1.
rewrite <- H3 in *; now apply LS'.
Qed.

Lemma lbase : A' (S z).
Proof.
intros m H1 H2. apply le_succ_l in H2.
apply le_ngt in H1. false_hyp H2 H1.
Qed.

Lemma A'A_left : (forall n, A' n) -> forall n, n <= z -> A n.
Proof.
intros H1 n H2. apply (H1 n); [assumption | now apply eq_le_incl].
Qed.

Theorem strong_left_induction: left_step' -> forall n, n <= z -> A n.
Proof.
intro LS'; apply A'A_left; unfold A'; nzinduct n (S z);
[apply lbase | apply ls'_ls''; apply LS'].
Qed.

Theorem left_induction : A z -> left_step -> forall n, n <= z -> A n.
Proof.
intros Az LS; apply strong_left_induction; now apply ls_ls'.
Qed.

Theorem left_induction' :
  (forall n, z <= n -> A n) -> left_step -> forall n, A n.
Proof.
intros R L n.
destruct (lt_trichotomy n z) as [H | [H | H]].
apply left_induction. apply R. now apply eq_le_incl. assumption.
now apply lt_le_incl.
rewrite H; apply R; now apply eq_le_incl.
apply R; now apply lt_le_incl.
Qed.

Theorem strong_left_induction' :
  (forall n, z <= n -> A n) -> left_step' -> forall n, A n.
Proof.
intros R L n.
destruct (lt_trichotomy n z) as [H | [H | H]].
apply strong_left_induction; auto. now apply lt_le_incl.
rewrite H; apply R; now apply eq_le_incl.
apply R; now apply lt_le_incl.
Qed.

End LeftInduction.

Theorem order_induction :
  A z ->
  (forall n, z <= n -> A n -> A (S n)) ->
  (forall n, n < z  -> A (S n) -> A n) ->
    forall n, A n.
Proof.
intros Az RS LS n.
destruct (lt_trichotomy n z) as [H | [H | H]].
now apply left_induction; [| | apply lt_le_incl].
now rewrite H.
now apply right_induction; [| | apply lt_le_incl].
Qed.

Theorem order_induction' :
  A z ->
  (forall n, z <= n -> A n -> A (S n)) ->
  (forall n, n <= z -> A n -> A (P n)) ->
    forall n, A n.
Proof.
intros Az AS AP n; apply order_induction; try assumption.
intros m H1 H2. apply AP in H2; [|now apply le_succ_l].
now rewrite pred_succ in H2.
Qed.

End Center.

Theorem order_induction_0 :
  A 0 ->
  (forall n, 0 <= n -> A n -> A (S n)) ->
  (forall n, n < 0  -> A (S n) -> A n) ->
    forall n, A n.
Proof (order_induction 0).

Theorem order_induction'_0 :
  A 0 ->
  (forall n, 0 <= n -> A n -> A (S n)) ->
  (forall n, n <= 0 -> A n -> A (P n)) ->
    forall n, A n.
Proof (order_induction' 0).

(** Elimintation principle for < *)

Theorem lt_ind : forall (n : t),
  A (S n) ->
  (forall m, n < m -> A m -> A (S m)) ->
   forall m, n < m -> A m.
Proof.
intros n H1 H2 m H3.
apply right_induction with (S n); [assumption | | now apply le_succ_l].
intros; apply H2; try assumption. now apply le_succ_l.
Qed.

(** Elimination principle for <= *)

Theorem le_ind : forall (n : t),
  A n ->
  (forall m, n <= m -> A m -> A (S m)) ->
   forall m, n <= m -> A m.
Proof.
intros n H1 H2 m H3.
now apply right_induction with n.
Qed.

End Induction.

Tactic Notation "nzord_induct" ident(n) :=
  induction_maker n ltac:(apply order_induction_0).

Tactic Notation "nzord_induct" ident(n) constr(z) :=
  induction_maker n ltac:(apply order_induction with z).

Section WF.

Variable z : t.

Let Rlt (n m : t) := z <= n < m.
Let Rgt (n m : t) := m < n <= z.

Instance Rlt_wd : Proper (eq ==> eq ==> iff) Rlt.
Proof.
intros x1 x2 H1 x3 x4 H2; unfold Rlt. rewrite H1; now rewrite H2.
Qed.

Instance Rgt_wd : Proper (eq ==> eq ==> iff) Rgt.
Proof.
intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2.
Qed.

Theorem lt_wf : well_founded Rlt.
Proof.
unfold well_founded.
apply strong_right_induction' with (z := z).
auto with typeclass_instances.
intros n H; constructor; intros y [H1 H2].
apply nle_gt in H2. elim H2. now apply le_trans with z.
intros n H1 H2; constructor; intros m [H3 H4]. now apply H2.
Qed.

Theorem gt_wf : well_founded Rgt.
Proof.
unfold well_founded.
apply strong_left_induction' with (z := z).
auto with typeclass_instances.
intros n H; constructor; intros y [H1 H2].
apply nle_gt in H2. elim H2. now apply le_lt_trans with n.
intros n H1 H2; constructor; intros m [H3 H4].
apply H2. assumption. now apply le_succ_l.
Qed.

End WF.

End NZOrderProp.

(** If we have moreover a [compare] function, we can build
    an [OrderedType] structure. *)

Module NZOrderedType (NZ : NZDecOrdSig')
 <: DecidableTypeFull <: OrderedTypeFull
 := NZ <+ NZBaseProp <+ NZOrderProp <+ Compare2EqBool <+ HasEqBool2Dec.