1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Initial Author : Evgeny Makarov, INRIA, 2007 *)
(*i $Id$ i*)
Require Export Equalities Orders NumPrelude GenericMinMax.
(** Axiomatization of a domain with zero, successor, predecessor,
and a bi-directional induction principle. We require [P (S n) = n]
but not the other way around, since this domain is meant
to be either N or Z. In fact it can be a few other things,
for instance [Z/nZ] (See file [NZDomain] for a study of that).
*)
Module Type ZeroSuccPred (Import T:Typ).
Parameter Inline zero : t.
Parameters Inline succ pred : t -> t.
End ZeroSuccPred.
Module Type ZeroSuccPredNotation (T:Typ)(Import NZ:ZeroSuccPred T).
Notation "0" := zero.
Notation S := succ.
Notation P := pred.
Notation "1" := (S 0).
Notation "2" := (S 1).
End ZeroSuccPredNotation.
Module Type ZeroSuccPred' (T:Typ) :=
ZeroSuccPred T <+ ZeroSuccPredNotation T.
Module Type IsNZDomain (Import E:Eq')(Import NZ:ZeroSuccPred' E).
Declare Instance succ_wd : Proper (eq ==> eq) S.
Declare Instance pred_wd : Proper (eq ==> eq) P.
Axiom pred_succ : forall n, P (S n) == n.
Axiom bi_induction :
forall A : t -> Prop, Proper (eq==>iff) A ->
A 0 -> (forall n, A n <-> A (S n)) -> forall n, A n.
End IsNZDomain.
Module Type NZDomainSig := EqualityType <+ ZeroSuccPred <+ IsNZDomain.
Module Type NZDomainSig' := EqualityType' <+ ZeroSuccPred' <+ IsNZDomain.
(** Axiomatization of basic operations : [+] [-] [*] *)
Module Type AddSubMul (Import T:Typ).
Parameters Inline add sub mul : t -> t -> t.
End AddSubMul.
Module Type AddSubMulNotation (T:Typ)(Import NZ:AddSubMul T).
Notation "x + y" := (add x y).
Notation "x - y" := (sub x y).
Notation "x * y" := (mul x y).
End AddSubMulNotation.
Module Type AddSubMul' (T:Typ) := AddSubMul T <+ AddSubMulNotation T.
Module Type IsAddSubMul (Import E:NZDomainSig')(Import NZ:AddSubMul' E).
Declare Instance add_wd : Proper (eq ==> eq ==> eq) add.
Declare Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
Declare Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
Axiom add_0_l : forall n, 0 + n == n.
Axiom add_succ_l : forall n m, (S n) + m == S (n + m).
Axiom sub_0_r : forall n, n - 0 == n.
Axiom sub_succ_r : forall n m, n - (S m) == P (n - m).
Axiom mul_0_l : forall n, 0 * n == 0.
Axiom mul_succ_l : forall n m, S n * m == n * m + m.
End IsAddSubMul.
Module Type NZBasicFunsSig := NZDomainSig <+ AddSubMul <+ IsAddSubMul.
Module Type NZBasicFunsSig' := NZDomainSig' <+ AddSubMul' <+IsAddSubMul.
(** Old name for the same interface: *)
Module Type NZAxiomsSig := NZBasicFunsSig.
Module Type NZAxiomsSig' := NZBasicFunsSig'.
(** Axiomatization of order *)
Module Type NZOrd := NZDomainSig <+ HasLt <+ HasLe.
Module Type NZOrd' := NZDomainSig' <+ HasLt <+ HasLe <+
LtNotation <+ LeNotation <+ LtLeNotation.
Module Type IsNZOrd (Import NZ : NZOrd').
Declare Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
Axiom lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
Axiom lt_irrefl : forall n, ~ (n < n).
Axiom lt_succ_r : forall n m, n < S m <-> n <= m.
End IsNZOrd.
(** NB: the compatibility of [le] can be proved later from [lt_wd]
and [lt_eq_cases] *)
Module Type NZOrdSig := NZOrd <+ IsNZOrd.
Module Type NZOrdSig' := NZOrd' <+ IsNZOrd.
(** Everything together : *)
Module Type NZOrdAxiomsSig <: NZBasicFunsSig <: NZOrdSig
:= NZOrdSig <+ AddSubMul <+ IsAddSubMul <+ HasMinMax.
Module Type NZOrdAxiomsSig' <: NZOrdAxiomsSig
:= NZOrdSig' <+ AddSubMul' <+ IsAddSubMul <+ HasMinMax.
(** Same, plus a comparison function. *)
Module Type NZDecOrdSig := NZOrdSig <+ HasCompare.
Module Type NZDecOrdSig' := NZOrdSig' <+ HasCompare.
Module Type NZDecOrdAxiomsSig := NZOrdAxiomsSig <+ HasCompare.
Module Type NZDecOrdAxiomsSig' := NZOrdAxiomsSig' <+ HasCompare.
|