1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
(*i $Id$ i*)
Require Import ZAxioms ZProperties.
Require Import ZArith_base.
Local Open Scope Z_scope.
(** * Implementation of [ZAxiomsSig] by [BinInt.Z] *)
Module ZBinAxiomsMod <: ZAxiomsExtSig.
(** Bi-directional induction. *)
Theorem bi_induction :
forall A : Z -> Prop, Proper (eq ==> iff) A ->
A 0 -> (forall n : Z, A n <-> A (Zsucc n)) -> forall n : Z, A n.
Proof.
intros A A_wd A0 AS n; apply Zind; clear n.
assumption.
intros; rewrite <- Zsucc_succ'. now apply -> AS.
intros n H. rewrite <- Zpred_pred'. rewrite Zsucc_pred in H. now apply <- AS.
Qed.
(** Basic operations. *)
Definition eq_equiv : Equivalence (@eq Z) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) Zsucc.
Program Instance pred_wd : Proper (eq==>eq) Zpred.
Program Instance add_wd : Proper (eq==>eq==>eq) Zplus.
Program Instance sub_wd : Proper (eq==>eq==>eq) Zminus.
Program Instance mul_wd : Proper (eq==>eq==>eq) Zmult.
Definition pred_succ n := eq_sym (Zpred_succ n).
Definition add_0_l := Zplus_0_l.
Definition add_succ_l := Zplus_succ_l.
Definition sub_0_r := Zminus_0_r.
Definition sub_succ_r := Zminus_succ_r.
Definition mul_0_l := Zmult_0_l.
Definition mul_succ_l := Zmult_succ_l.
(** Order *)
Program Instance lt_wd : Proper (eq==>eq==>iff) Zlt.
Definition lt_eq_cases := Zle_lt_or_eq_iff.
Definition lt_irrefl := Zlt_irrefl.
Definition lt_succ_r := Zlt_succ_r.
Definition min_l := Zmin_l.
Definition min_r := Zmin_r.
Definition max_l := Zmax_l.
Definition max_r := Zmax_r.
(** Properties specific to integers, not natural numbers. *)
Program Instance opp_wd : Proper (eq==>eq) Zopp.
Definition succ_pred n := eq_sym (Zsucc_pred n).
Definition opp_0 := Zopp_0.
Definition opp_succ := Zopp_succ.
(** Absolute value and sign *)
Definition abs_eq := Zabs_eq.
Definition abs_neq := Zabs_non_eq.
Lemma sgn_null : forall x, x = 0 -> Zsgn x = 0.
Proof. intros. apply <- Zsgn_null; auto. Qed.
Lemma sgn_pos : forall x, 0 < x -> Zsgn x = 1.
Proof. intros. apply <- Zsgn_pos; auto. Qed.
Lemma sgn_neg : forall x, x < 0 -> Zsgn x = -1.
Proof. intros. apply <- Zsgn_neg; auto. Qed.
(** The instantiation of operations.
Placing them at the very end avoids having indirections in above lemmas. *)
Definition t := Z.
Definition eq := (@eq Z).
Definition zero := 0.
Definition succ := Zsucc.
Definition pred := Zpred.
Definition add := Zplus.
Definition sub := Zminus.
Definition mul := Zmult.
Definition lt := Zlt.
Definition le := Zle.
Definition min := Zmin.
Definition max := Zmax.
Definition opp := Zopp.
Definition abs := Zabs.
Definition sgn := Zsgn.
End ZBinAxiomsMod.
Module Export ZBinPropMod := ZPropFunct ZBinAxiomsMod.
(** Z forms a ring *)
(*Lemma Zring : ring_theory 0 1 NZadd NZmul NZsub Zopp NZeq.
Proof.
constructor.
exact Zadd_0_l.
exact Zadd_comm.
exact Zadd_assoc.
exact Zmul_1_l.
exact Zmul_comm.
exact Zmul_assoc.
exact Zmul_add_distr_r.
intros; now rewrite Zadd_opp_minus.
exact Zadd_opp_r.
Qed.
Add Ring ZR : Zring.*)
(*
Theorem eq_equiv_e : forall x y : Z, E x y <-> e x y.
Proof.
intros x y; unfold E, e, Zeq_bool; split; intro H.
rewrite H; now rewrite Zcompare_refl.
rewrite eq_true_unfold_pos in H.
assert (H1 : (x ?= y) = Eq).
case_eq (x ?= y); intro H1; rewrite H1 in H; simpl in H;
[reflexivity | discriminate H | discriminate H].
now apply Zcompare_Eq_eq.
Qed.
*)
|