1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Properties of [abs] and [sgn] *)
Require Import ZMulOrder.
(** Since we already have [max], we could have defined [abs]. *)
Module GenericAbs (Import Z : ZAxiomsMiniSig')
(Import ZP : ZMulOrderProp Z) <: HasAbs Z.
Definition abs n := max n (-n).
Lemma abs_eq : forall n, 0<=n -> abs n == n.
Proof.
intros. unfold abs. apply max_l.
apply le_trans with 0; auto.
rewrite opp_nonpos_nonneg; auto.
Qed.
Lemma abs_neq : forall n, n<=0 -> abs n == -n.
Proof.
intros. unfold abs. apply max_r.
apply le_trans with 0; auto.
rewrite opp_nonneg_nonpos; auto.
Qed.
End GenericAbs.
(** We can deduce a [sgn] function from a [compare] function *)
Module Type ZDecAxiomsSig := ZAxiomsMiniSig <+ HasCompare.
Module Type ZDecAxiomsSig' := ZAxiomsMiniSig' <+ HasCompare.
Module Type GenericSgn (Import Z : ZDecAxiomsSig')
(Import ZP : ZMulOrderProp Z) <: HasSgn Z.
Definition sgn n :=
match compare 0 n with Eq => 0 | Lt => 1 | Gt => -1 end.
Lemma sgn_null : forall n, n==0 -> sgn n == 0.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
Lemma sgn_pos : forall n, 0<n -> sgn n == 1.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
Lemma sgn_neg : forall n, n<0 -> sgn n == -1.
Proof. unfold sgn; intros. destruct (compare_spec 0 n); order. Qed.
End GenericSgn.
(** Derived properties of [abs] and [sgn] *)
Module Type ZSgnAbsProp (Import Z : ZAxiomsSig')
(Import ZP : ZMulOrderProp Z).
Ltac destruct_max n :=
destruct (le_ge_cases 0 n);
[rewrite (abs_eq n) by auto | rewrite (abs_neq n) by auto].
Instance abs_wd : Proper (eq==>eq) abs.
Proof.
intros x y EQ. destruct_max x.
rewrite abs_eq; trivial. now rewrite <- EQ.
rewrite abs_neq; try order. now rewrite opp_inj_wd.
Qed.
Lemma abs_max : forall n, abs n == max n (-n).
Proof.
intros n. destruct_max n.
rewrite max_l; auto with relations.
apply le_trans with 0; auto.
rewrite opp_nonpos_nonneg; auto.
rewrite max_r; auto with relations.
apply le_trans with 0; auto.
rewrite opp_nonneg_nonpos; auto.
Qed.
Lemma abs_neq' : forall n, 0<=-n -> abs n == -n.
Proof.
intros. apply abs_neq. now rewrite <- opp_nonneg_nonpos.
Qed.
Lemma abs_nonneg : forall n, 0 <= abs n.
Proof.
intros n. destruct_max n; auto.
now rewrite opp_nonneg_nonpos.
Qed.
Lemma abs_eq_iff : forall n, abs n == n <-> 0<=n.
Proof.
split; try apply abs_eq. intros EQ.
rewrite <- EQ. apply abs_nonneg.
Qed.
Lemma abs_neq_iff : forall n, abs n == -n <-> n<=0.
Proof.
split; try apply abs_neq. intros EQ.
rewrite <- opp_nonneg_nonpos, <- EQ. apply abs_nonneg.
Qed.
Lemma abs_opp : forall n, abs (-n) == abs n.
Proof.
intros. destruct_max n.
rewrite (abs_neq (-n)), opp_involutive. reflexivity.
now rewrite opp_nonpos_nonneg.
rewrite (abs_eq (-n)). reflexivity.
now rewrite opp_nonneg_nonpos.
Qed.
Lemma abs_0 : abs 0 == 0.
Proof.
apply abs_eq. apply le_refl.
Qed.
Lemma abs_0_iff : forall n, abs n == 0 <-> n==0.
Proof.
split. destruct_max n; auto.
now rewrite eq_opp_l, opp_0.
intros EQ; rewrite EQ. rewrite abs_eq; auto using eq_refl, le_refl.
Qed.
Lemma abs_pos : forall n, 0 < abs n <-> n~=0.
Proof.
intros. rewrite <- abs_0_iff. split; [intros LT| intros NEQ].
intro EQ. rewrite EQ in LT. now elim (lt_irrefl 0).
assert (LE : 0 <= abs n) by apply abs_nonneg.
rewrite lt_eq_cases in LE; destruct LE; auto.
elim NEQ; auto with relations.
Qed.
Lemma abs_eq_or_opp : forall n, abs n == n \/ abs n == -n.
Proof.
intros. destruct_max n; auto with relations.
Qed.
Lemma abs_or_opp_abs : forall n, n == abs n \/ n == - abs n.
Proof.
intros. destruct_max n; rewrite ? opp_involutive; auto with relations.
Qed.
Lemma abs_involutive : forall n, abs (abs n) == abs n.
Proof.
intros. apply abs_eq. apply abs_nonneg.
Qed.
Lemma abs_spec : forall n,
(0 <= n /\ abs n == n) \/ (n < 0 /\ abs n == -n).
Proof.
intros. destruct (le_gt_cases 0 n).
left; split; auto. now apply abs_eq.
right; split; auto. apply abs_neq. now apply lt_le_incl.
Qed.
Lemma abs_case_strong :
forall (P:t->Prop) n, Proper (eq==>iff) P ->
(0<=n -> P n) -> (n<=0 -> P (-n)) -> P (abs n).
Proof.
intros. destruct_max n; auto.
Qed.
Lemma abs_case : forall (P:t->Prop) n, Proper (eq==>iff) P ->
P n -> P (-n) -> P (abs n).
Proof. intros. now apply abs_case_strong. Qed.
Lemma abs_eq_cases : forall n m, abs n == abs m -> n == m \/ n == - m.
Proof.
intros n m EQ. destruct (abs_or_opp_abs n) as [EQn|EQn].
rewrite EQn, EQ. apply abs_eq_or_opp.
rewrite EQn, EQ, opp_inj_wd, eq_opp_l, or_comm. apply abs_eq_or_opp.
Qed.
Lemma abs_lt : forall a b, abs a < b <-> -b < a < b.
Proof.
intros a b.
destruct (abs_spec a) as [[LE EQ]|[LT EQ]]; rewrite EQ; clear EQ.
split; try split; try destruct 1; try order.
apply lt_le_trans with 0; trivial. apply opp_neg_pos; order.
rewrite opp_lt_mono, opp_involutive.
split; try split; try destruct 1; try order.
apply lt_le_trans with 0; trivial. apply opp_nonpos_nonneg; order.
Qed.
Lemma abs_le : forall a b, abs a <= b <-> -b <= a <= b.
Proof.
intros a b.
destruct (abs_spec a) as [[LE EQ]|[LT EQ]]; rewrite EQ; clear EQ.
split; try split; try destruct 1; try order.
apply le_trans with 0; trivial. apply opp_nonpos_nonneg; order.
rewrite opp_le_mono, opp_involutive.
split; try split; try destruct 1; try order.
apply le_trans with 0. order. apply opp_nonpos_nonneg; order.
Qed.
(** Triangular inequality *)
Lemma abs_triangle : forall n m, abs (n + m) <= abs n + abs m.
Proof.
intros. destruct_max n; destruct_max m.
rewrite abs_eq. apply le_refl. now apply add_nonneg_nonneg.
destruct_max (n+m); try rewrite opp_add_distr;
apply add_le_mono_l || apply add_le_mono_r.
apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
destruct_max (n+m); try rewrite opp_add_distr;
apply add_le_mono_l || apply add_le_mono_r.
apply le_trans with 0; auto. now rewrite opp_nonneg_nonpos.
apply le_trans with 0; auto. now rewrite opp_nonpos_nonneg.
rewrite abs_neq, opp_add_distr. apply le_refl.
now apply add_nonpos_nonpos.
Qed.
Lemma abs_sub_triangle : forall n m, abs n - abs m <= abs (n-m).
Proof.
intros.
rewrite le_sub_le_add_l, add_comm.
rewrite <- (sub_simpl_r n m) at 1.
apply abs_triangle.
Qed.
(** Absolute value and multiplication *)
Lemma abs_mul : forall n m, abs (n * m) == abs n * abs m.
Proof.
assert (H : forall n m, 0<=n -> abs (n*m) == n * abs m).
intros. destruct_max m.
rewrite abs_eq. apply eq_refl. now apply mul_nonneg_nonneg.
rewrite abs_neq, mul_opp_r. reflexivity. now apply mul_nonneg_nonpos .
intros. destruct_max n. now apply H.
rewrite <- mul_opp_opp, H, abs_opp. reflexivity.
now apply opp_nonneg_nonpos.
Qed.
Lemma abs_square : forall n, abs n * abs n == n * n.
Proof.
intros. rewrite <- abs_mul. apply abs_eq. apply le_0_square.
Qed.
(** Some results about the sign function. *)
Ltac destruct_sgn n :=
let LT := fresh "LT" in
let EQ := fresh "EQ" in
let GT := fresh "GT" in
destruct (lt_trichotomy 0 n) as [LT|[EQ|GT]];
[rewrite (sgn_pos n) by auto|
rewrite (sgn_null n) by auto with relations|
rewrite (sgn_neg n) by auto].
Instance sgn_wd : Proper (eq==>eq) sgn.
Proof.
intros x y Hxy. destruct_sgn x.
rewrite sgn_pos; auto with relations. rewrite <- Hxy; auto.
rewrite sgn_null; auto with relations. rewrite <- Hxy; auto with relations.
rewrite sgn_neg; auto with relations. rewrite <- Hxy; auto.
Qed.
Lemma sgn_spec : forall n,
0 < n /\ sgn n == 1 \/
0 == n /\ sgn n == 0 \/
0 > n /\ sgn n == -1.
Proof.
intros n.
destruct_sgn n; [left|right;left|right;right]; auto with relations.
Qed.
Lemma sgn_0 : sgn 0 == 0.
Proof.
now apply sgn_null.
Qed.
Lemma sgn_pos_iff : forall n, sgn n == 1 <-> 0<n.
Proof.
split; try apply sgn_pos. destruct_sgn n; auto.
intros. elim (lt_neq 0 1); auto. apply lt_0_1.
intros. elim (lt_neq (-1) 1); auto.
apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1.
Qed.
Lemma sgn_null_iff : forall n, sgn n == 0 <-> n==0.
Proof.
split; try apply sgn_null. destruct_sgn n; auto with relations.
intros. elim (lt_neq 0 1); auto with relations. apply lt_0_1.
intros. elim (lt_neq (-1) 0); auto.
rewrite opp_neg_pos. apply lt_0_1.
Qed.
Lemma sgn_neg_iff : forall n, sgn n == -1 <-> n<0.
Proof.
split; try apply sgn_neg. destruct_sgn n; auto with relations.
intros. elim (lt_neq (-1) 1); auto with relations.
apply lt_trans with 0. rewrite opp_neg_pos. apply lt_0_1. apply lt_0_1.
intros. elim (lt_neq (-1) 0); auto with relations.
rewrite opp_neg_pos. apply lt_0_1.
Qed.
Lemma sgn_opp : forall n, sgn (-n) == - sgn n.
Proof.
intros. destruct_sgn n.
apply sgn_neg. now rewrite opp_neg_pos.
setoid_replace n with 0 by auto with relations.
rewrite opp_0. apply sgn_0.
rewrite opp_involutive. apply sgn_pos. now rewrite opp_pos_neg.
Qed.
Lemma sgn_nonneg : forall n, 0 <= sgn n <-> 0 <= n.
Proof.
split.
destruct_sgn n; intros.
now apply lt_le_incl.
order.
elim (lt_irrefl 0). apply lt_le_trans with 1; auto using lt_0_1.
now rewrite <- opp_nonneg_nonpos.
rewrite lt_eq_cases; destruct 1.
rewrite sgn_pos by auto. apply lt_le_incl, lt_0_1.
rewrite sgn_null by auto with relations. apply le_refl.
Qed.
Lemma sgn_nonpos : forall n, sgn n <= 0 <-> n <= 0.
Proof.
intros. rewrite <- 2 opp_nonneg_nonpos, <- sgn_opp. apply sgn_nonneg.
Qed.
Lemma sgn_mul : forall n m, sgn (n*m) == sgn n * sgn m.
Proof.
intros. destruct_sgn n; nzsimpl.
destruct_sgn m.
apply sgn_pos. now apply mul_pos_pos.
apply sgn_null. rewrite eq_mul_0; auto with relations.
apply sgn_neg. now apply mul_pos_neg.
apply sgn_null. rewrite eq_mul_0; auto with relations.
destruct_sgn m; try rewrite mul_opp_opp; nzsimpl.
apply sgn_neg. now apply mul_neg_pos.
apply sgn_null. rewrite eq_mul_0; auto with relations.
apply sgn_pos. now apply mul_neg_neg.
Qed.
Lemma sgn_abs : forall n, n * sgn n == abs n.
Proof.
intros. symmetry.
destruct_sgn n; try rewrite mul_opp_r; nzsimpl.
apply abs_eq. now apply lt_le_incl.
rewrite abs_0_iff; auto with relations.
apply abs_neq. now apply lt_le_incl.
Qed.
Lemma abs_sgn : forall n, abs n * sgn n == n.
Proof.
intros.
destruct_sgn n; try rewrite mul_opp_r; nzsimpl; auto.
apply abs_eq. now apply lt_le_incl.
rewrite eq_opp_l. apply abs_neq. now apply lt_le_incl.
Qed.
Lemma sgn_sgn : forall x, sgn (sgn x) == sgn x.
Proof.
intros.
destruct (sgn_spec x) as [(LT,EQ)|[(EQ',EQ)|(LT,EQ)]]; rewrite EQ.
apply sgn_pos, lt_0_1.
now apply sgn_null.
apply sgn_neg. rewrite opp_neg_pos. apply lt_0_1.
Qed.
End ZSgnAbsProp.
|