1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZAxioms ZMulOrder ZSgnAbs ZGcd ZDivTrunc ZDivFloor.
(** * Least Common Multiple *)
(** Unlike other functions around, we will define lcm below instead of
axiomatizing it. Indeed, there is no "prior art" about lcm in the
standard library to be compliant with, and the generic definition
of lcm via gcd is quite reasonable.
By the way, we also state here some combined properties of div/mod
and quot/rem and gcd.
*)
Module Type ZLcmProp
(Import A : ZAxiomsSig')
(Import B : ZMulOrderProp A)
(Import C : ZSgnAbsProp A B)
(Import D : ZDivProp A B C)
(Import E : ZQuotProp A B C)
(Import F : ZGcdProp A B C).
(** The two notions of division are equal on non-negative numbers *)
Lemma quot_div_nonneg : forall a b, 0<=a -> 0<b -> a÷b == a/b.
Proof.
intros. apply div_unique_pos with (a rem b).
now apply rem_bound_pos.
apply quot_rem. order.
Qed.
Lemma rem_mod_nonneg : forall a b, 0<=a -> 0<b -> a rem b == a mod b.
Proof.
intros. apply mod_unique_pos with (a÷b).
now apply rem_bound_pos.
apply quot_rem. order.
Qed.
(** We can use the sign rule to have an relation between divisions. *)
Lemma quot_div : forall a b, b~=0 ->
a÷b == (sgn a)*(sgn b)*(abs a / abs b).
Proof.
assert (AUX : forall a b, 0<b -> a÷b == (sgn a)*(sgn b)*(abs a / abs b)).
intros a b Hb. rewrite (sgn_pos b), (abs_eq b), mul_1_r by order.
destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]].
rewrite sgn_pos, abs_eq, mul_1_l, quot_div_nonneg; order.
rewrite <- Ha, abs_0, sgn_0, quot_0_l, div_0_l, mul_0_l; order.
rewrite sgn_neg, abs_neq, mul_opp_l, mul_1_l, eq_opp_r, <-quot_opp_l
by order.
apply quot_div_nonneg; trivial. apply opp_nonneg_nonpos; order.
(* main *)
intros a b Hb.
apply neg_pos_cases in Hb. destruct Hb as [Hb|Hb]; [|now apply AUX].
rewrite <- (opp_involutive b) at 1. rewrite quot_opp_r.
rewrite AUX, abs_opp, sgn_opp, mul_opp_r, mul_opp_l, opp_involutive.
reflexivity.
now apply opp_pos_neg.
rewrite eq_opp_l, opp_0; order.
Qed.
Lemma rem_mod : forall a b, b~=0 ->
a rem b == (sgn a) * ((abs a) mod (abs b)).
Proof.
intros a b Hb.
rewrite <- rem_abs_r by trivial.
assert (Hb' := proj2 (abs_pos b) Hb).
destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]].
rewrite (abs_eq a), sgn_pos, mul_1_l, rem_mod_nonneg; order.
rewrite <- Ha, abs_0, sgn_0, mod_0_l, rem_0_l, mul_0_l; order.
rewrite sgn_neg, (abs_neq a), mul_opp_l, mul_1_l, eq_opp_r, <-rem_opp_l
by order.
apply rem_mod_nonneg; trivial. apply opp_nonneg_nonpos; order.
Qed.
(** Modulo and remainder are null at the same place,
and this correspond to the divisibility relation. *)
Lemma mod_divide : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
intros Hab. exists (a/b). rewrite mul_comm.
rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.
Lemma rem_divide : forall a b, b~=0 -> (a rem b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
intros Hab. exists (a÷b). rewrite mul_comm.
rewrite (quot_rem a b Hb) at 1. rewrite Hab; now nzsimpl.
intros (c,Hc). rewrite Hc. now apply rem_mul.
Qed.
Lemma rem_mod_eq_0 : forall a b, b~=0 -> (a rem b == 0 <-> a mod b == 0).
Proof.
intros a b Hb. now rewrite mod_divide, rem_divide.
Qed.
(** When division is exact, div and quot agree *)
Lemma quot_div_exact : forall a b, b~=0 -> (b|a) -> a÷b == a/b.
Proof.
intros a b Hb H.
apply mul_cancel_l with b; trivial.
assert (H':=H).
apply rem_divide, quot_exact in H; trivial.
apply mod_divide, div_exact in H'; trivial.
now rewrite <-H,<-H'.
Qed.
Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) ->
(c*a)/b == c*(a/b).
Proof.
intros a b c Hb H.
apply mul_cancel_l with b; trivial.
rewrite mul_assoc, mul_shuffle0.
assert (H':=H). apply mod_divide, div_exact in H'; trivial.
rewrite <- H', (mul_comm a c).
symmetry. apply div_exact; trivial.
apply mod_divide; trivial.
now apply divide_mul_r.
Qed.
Lemma divide_quot_mul_exact : forall a b c, b~=0 -> (b|a) ->
(c*a)÷b == c*(a÷b).
Proof.
intros a b c Hb H.
rewrite 2 quot_div_exact; trivial.
apply divide_div_mul_exact; trivial.
now apply divide_mul_r.
Qed.
(** Gcd of divided elements, for exact divisions *)
Lemma gcd_div_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
gcd (a/c) (b/c) == (gcd a b)/c.
Proof.
intros a b c Hc Ha Hb.
apply mul_cancel_l with c; try order.
assert (H:=gcd_greatest _ _ _ Ha Hb).
apply mod_divide, div_exact in H; try order.
rewrite <- H.
rewrite <- gcd_mul_mono_l_nonneg; try order.
f_equiv; symmetry; apply div_exact; try order;
apply mod_divide; trivial; try order.
Qed.
Lemma gcd_quot_factor : forall a b c, 0<c -> (c|a) -> (c|b) ->
gcd (a÷c) (b÷c) == (gcd a b)÷c.
Proof.
intros a b c Hc Ha Hb. rewrite !quot_div_exact; trivial; try order.
now apply gcd_div_factor. now apply gcd_greatest.
Qed.
Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b ->
gcd (a/g) (b/g) == 1.
Proof.
intros a b g NZ EQ. rewrite gcd_div_factor.
now rewrite <- EQ, div_same.
generalize (gcd_nonneg a b); order.
rewrite EQ; apply gcd_divide_l.
rewrite EQ; apply gcd_divide_r.
Qed.
Lemma gcd_quot_gcd : forall a b g, g~=0 -> g == gcd a b ->
gcd (a÷g) (b÷g) == 1.
Proof.
intros a b g NZ EQ. rewrite !quot_div_exact; trivial.
now apply gcd_div_gcd.
rewrite EQ; apply gcd_divide_r.
rewrite EQ; apply gcd_divide_l.
Qed.
(** The following equality is crucial for Euclid algorithm *)
Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a.
Proof.
intros a b Hb. rewrite mod_eq; trivial.
rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
rewrite (gcd_comm _ b).
apply gcd_add_mult_diag_r.
Qed.
Lemma gcd_rem : forall a b, b~=0 -> gcd (a rem b) b == gcd b a.
Proof.
intros a b Hb. rewrite rem_eq; trivial.
rewrite <- add_opp_r, mul_comm, <- mul_opp_l.
rewrite (gcd_comm _ b).
apply gcd_add_mult_diag_r.
Qed.
(** We now define lcm thanks to gcd:
lcm a b = a * (b / gcd a b)
= (a / gcd a b) * b
= (a*b) / gcd a b
We had an abs in order to have an always-nonnegative lcm,
in the spirit of gcd. Nota: [lcm 0 0] should be 0, which
isn't garantee with the third equation above.
*)
Definition lcm a b := abs (a*(b/gcd a b)).
Instance lcm_wd : Proper (eq==>eq==>eq) lcm.
Proof. unfold lcm. solve_proper. Qed.
Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 ->
a * (b / gcd a b) == (a*b)/gcd a b.
Proof.
intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r.
Qed.
Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 ->
(a / gcd a b) * b == (a*b)/gcd a b.
Proof.
intros a b H. rewrite 2 (mul_comm _ b).
rewrite divide_div_mul_exact; try easy. apply gcd_divide_l.
Qed.
Lemma gcd_div_swap : forall a b,
(a / gcd a b) * b == a * (b / gcd a b).
Proof.
intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl.
now rewrite lcm_equiv1, <-lcm_equiv2.
Qed.
Lemma divide_lcm_l : forall a b, (a | lcm a b).
Proof.
unfold lcm. intros a b. apply divide_abs_r, divide_factor_l.
Qed.
Lemma divide_lcm_r : forall a b, (b | lcm a b).
Proof.
unfold lcm. intros a b. apply divide_abs_r. rewrite <- gcd_div_swap.
apply divide_factor_r.
Qed.
Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a).
Proof.
intros a b c Ha Hb (c',Hc). exists c'.
now rewrite <- divide_div_mul_exact, <- Hc.
Qed.
Lemma lcm_least : forall a b c,
(a | c) -> (b | c) -> (lcm a b | c).
Proof.
intros a b c Ha Hb. unfold lcm. apply divide_abs_l.
destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl.
assert (Ga := gcd_divide_l a b).
assert (Gb := gcd_divide_r a b).
set (g:=gcd a b) in *.
assert (Ha' := divide_div g a c NEQ Ga Ha).
assert (Hb' := divide_div g b c NEQ Gb Hb).
destruct Ha' as (a',Ha'). rewrite Ha', mul_comm in Hb'.
apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm].
destruct Hb' as (b',Hb').
exists b'.
rewrite mul_shuffle3, <- Hb'.
rewrite (proj2 (div_exact c g NEQ)).
rewrite Ha', mul_shuffle3, (mul_comm a a'). f_equiv.
symmetry. apply div_exact; trivial.
apply mod_divide; trivial.
apply mod_divide; trivial. transitivity a; trivial.
Qed.
Lemma lcm_nonneg : forall a b, 0 <= lcm a b.
Proof.
intros a b. unfold lcm. apply abs_nonneg.
Qed.
Lemma lcm_comm : forall a b, lcm a b == lcm b a.
Proof.
intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b).
now rewrite <- gcd_div_swap.
Qed.
Lemma lcm_divide_iff : forall n m p,
(lcm n m | p) <-> (n | p) /\ (m | p).
Proof.
intros. split. split.
transitivity (lcm n m); trivial using divide_lcm_l.
transitivity (lcm n m); trivial using divide_lcm_r.
intros (H,H'). now apply lcm_least.
Qed.
Lemma lcm_unique : forall n m p,
0<=p -> (n|p) -> (m|p) ->
(forall q, (n|q) -> (m|q) -> (p|q)) ->
lcm n m == p.
Proof.
intros n m p Hp Hn Hm H.
apply divide_antisym_nonneg; trivial. apply lcm_nonneg.
now apply lcm_least.
apply H. apply divide_lcm_l. apply divide_lcm_r.
Qed.
Lemma lcm_unique_alt : forall n m p, 0<=p ->
(forall q, (p|q) <-> (n|q) /\ (m|q)) ->
lcm n m == p.
Proof.
intros n m p Hp H.
apply lcm_unique; trivial.
apply H, divide_refl.
apply H, divide_refl.
intros. apply H. now split.
Qed.
Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p.
Proof.
intros. apply lcm_unique_alt; try apply lcm_nonneg.
intros. now rewrite !lcm_divide_iff, and_assoc.
Qed.
Lemma lcm_0_l : forall n, lcm 0 n == 0.
Proof.
intros. apply lcm_unique; trivial. order.
apply divide_refl.
apply divide_0_r.
Qed.
Lemma lcm_0_r : forall n, lcm n 0 == 0.
Proof.
intros. now rewrite lcm_comm, lcm_0_l.
Qed.
Lemma lcm_1_l_nonneg : forall n, 0<=n -> lcm 1 n == n.
Proof.
intros. apply lcm_unique; trivial using divide_1_l, le_0_1, divide_refl.
Qed.
Lemma lcm_1_r_nonneg : forall n, 0<=n -> lcm n 1 == n.
Proof.
intros. now rewrite lcm_comm, lcm_1_l_nonneg.
Qed.
Lemma lcm_diag_nonneg : forall n, 0<=n -> lcm n n == n.
Proof.
intros. apply lcm_unique; trivial using divide_refl.
Qed.
Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0.
Proof.
intros. split.
intros EQ.
apply eq_mul_0.
apply divide_0_l. rewrite <- EQ. apply lcm_least.
apply divide_factor_l. apply divide_factor_r.
destruct 1 as [EQ|EQ]; rewrite EQ. apply lcm_0_l. apply lcm_0_r.
Qed.
Lemma divide_lcm_eq_r : forall n m, 0<=m -> (n|m) -> lcm n m == m.
Proof.
intros n m Hm H. apply lcm_unique_alt; trivial.
intros q. split. split; trivial. now transitivity m.
now destruct 1.
Qed.
Lemma divide_lcm_iff : forall n m, 0<=m -> ((n|m) <-> lcm n m == m).
Proof.
intros n m Hn. split. now apply divide_lcm_eq_r.
intros EQ. rewrite <- EQ. apply divide_lcm_l.
Qed.
Lemma lcm_opp_l : forall n m, lcm (-n) m == lcm n m.
Proof.
intros. apply lcm_unique_alt; try apply lcm_nonneg.
intros. rewrite divide_opp_l. apply lcm_divide_iff.
Qed.
Lemma lcm_opp_r : forall n m, lcm n (-m) == lcm n m.
Proof.
intros. now rewrite lcm_comm, lcm_opp_l, lcm_comm.
Qed.
Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m.
Proof.
intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
easy. apply lcm_opp_l.
Qed.
Lemma lcm_abs_r : forall n m, lcm n (abs m) == lcm n m.
Proof.
intros. now rewrite lcm_comm, lcm_abs_l, lcm_comm.
Qed.
Lemma lcm_1_l : forall n, lcm 1 n == abs n.
Proof.
intros. rewrite <- lcm_abs_r. apply lcm_1_l_nonneg, abs_nonneg.
Qed.
Lemma lcm_1_r : forall n, lcm n 1 == abs n.
Proof.
intros. now rewrite lcm_comm, lcm_1_l.
Qed.
Lemma lcm_diag : forall n, lcm n n == abs n.
Proof.
intros. rewrite <- lcm_abs_l, <- lcm_abs_r.
apply lcm_diag_nonneg, abs_nonneg.
Qed.
Lemma lcm_mul_mono_l :
forall n m p, lcm (p * n) (p * m) == abs p * lcm n m.
Proof.
intros n m p.
destruct (eq_decidable p 0) as [Hp|Hp].
rewrite Hp. nzsimpl. rewrite lcm_0_l, abs_0. now nzsimpl.
destruct (eq_decidable (gcd n m) 0) as [Hg|Hg].
apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm.
nzsimpl. rewrite lcm_0_l. now nzsimpl.
unfold lcm.
rewrite gcd_mul_mono_l.
rewrite !abs_mul, mul_assoc. f_equiv.
rewrite <- (abs_sgn p) at 1. rewrite <- mul_assoc.
rewrite div_mul_cancel_l; trivial.
rewrite divide_div_mul_exact; trivial. rewrite abs_mul.
rewrite <- (sgn_abs (sgn p)), sgn_sgn.
destruct (sgn_spec p) as [(_,EQ)|[(EQ,_)|(_,EQ)]].
rewrite EQ. now nzsimpl. order.
rewrite EQ. rewrite mul_opp_l, mul_opp_r, opp_involutive. now nzsimpl.
apply gcd_divide_r.
contradict Hp. now apply abs_0_iff.
Qed.
Lemma lcm_mul_mono_l_nonneg :
forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m.
Proof.
intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l.
Qed.
Lemma lcm_mul_mono_r :
forall n m p, lcm (n * p) (m * p) == lcm n m * abs p.
Proof.
intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm.
Qed.
Lemma lcm_mul_mono_r_nonneg :
forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p.
Proof.
intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r.
Qed.
Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 ->
(gcd n m == 1 <-> lcm n m == abs (n*m)).
Proof.
intros n m Hn Hm. split; intros H.
unfold lcm. rewrite H. now rewrite div_1_r.
unfold lcm in *.
rewrite !abs_mul in H. apply mul_cancel_l in H; [|now rewrite abs_0_iff].
assert (H' := gcd_divide_r n m).
assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order).
apply mod_divide in H'; trivial. apply div_exact in H'; trivial.
assert (m / gcd n m ~=0) by (contradict Hm; rewrite H', Hm; now nzsimpl).
rewrite <- (mul_1_l (abs (_/_))) in H.
rewrite H' in H at 3. rewrite abs_mul in H.
apply mul_cancel_r in H; [|now rewrite abs_0_iff].
rewrite abs_eq in H. order. apply gcd_nonneg.
Qed.
End ZLcmProp.
|