blob: 15beb2b9c65615efa260ee851622e68c6a83da04 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
(*i $Id: ZDomain.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
Require Export NumPrelude.
Module Type ZDomainSignature.
Parameter Inline Z : Set.
Parameter Inline Zeq : Z -> Z -> Prop.
Parameter Inline e : Z -> Z -> bool.
Axiom eq_equiv_e : forall x y : Z, Zeq x y <-> e x y.
Axiom eq_equiv : equiv Z Zeq.
Add Relation Z Zeq
reflexivity proved by (proj1 eq_equiv)
symmetry proved by (proj2 (proj2 eq_equiv))
transitivity proved by (proj1 (proj2 eq_equiv))
as eq_rel.
Delimit Scope IntScope with Int.
Bind Scope IntScope with Z.
Notation "x == y" := (Zeq x y) (at level 70) : IntScope.
Notation "x # y" := (~ Zeq x y) (at level 70) : IntScope.
End ZDomainSignature.
Module ZDomainProperties (Import ZDomainModule : ZDomainSignature).
Open Local Scope IntScope.
Add Morphism e with signature Zeq ==> Zeq ==> eq_bool as e_wd.
Proof.
intros x x' Exx' y y' Eyy'.
case_eq (e x y); case_eq (e x' y'); intros H1 H2; trivial.
assert (x == y); [apply <- eq_equiv_e; now rewrite H2 |
assert (x' == y'); [rewrite <- Exx'; now rewrite <- Eyy' |
rewrite <- H1; assert (H3 : e x' y'); [now apply -> eq_equiv_e | now inversion H3]]].
assert (x' == y'); [apply <- eq_equiv_e; now rewrite H1 |
assert (x == y); [rewrite Exx'; now rewrite Eyy' |
rewrite <- H2; assert (H3 : e x y); [now apply -> eq_equiv_e | now inversion H3]]].
Qed.
Theorem neq_symm : forall n m, n # m -> m # n.
Proof.
intros n m H1 H2; symmetry in H2; false_hyp H2 H1.
Qed.
Theorem ZE_stepl : forall x y z : Z, x == y -> x == z -> z == y.
Proof.
intros x y z H1 H2; now rewrite <- H1.
Qed.
Declare Left Step ZE_stepl.
(* The right step lemma is just transitivity of Zeq *)
Declare Right Step (proj1 (proj2 eq_equiv)).
End ZDomainProperties.
|