summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZBase.v
blob: a42e8230a63d6404a747503d21ed37fa6288576d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: ZBase.v 13323 2010-07-24 15:57:30Z herbelin $ i*)

Require Export Decidable.
Require Export ZAxioms.
Require Import NZProperties.

Module ZBasePropFunct (Import Z : ZAxiomsSig').
Include NZPropFunct Z.

(* Theorems that are true for integers but not for natural numbers *)

Theorem pred_inj : forall n m, P n == P m -> n == m.
Proof.
intros n m H. apply succ_wd in H. now do 2 rewrite succ_pred in H.
Qed.

Theorem pred_inj_wd : forall n1 n2, P n1 == P n2 <-> n1 == n2.
Proof.
intros n1 n2; split; [apply pred_inj | apply pred_wd].
Qed.

End ZBasePropFunct.