summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZAddOrder.v
blob: 06ac0ba0d3b2737eebdb21e037a89dfbfbccdb3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export ZLt.

Module ZAddOrderProp (Import Z : ZAxiomsMiniSig').
Include ZOrderProp Z.

(** Theorems that are either not valid on N or have different proofs
    on N and Z *)

Theorem add_neg_neg : forall n m, n < 0 -> m < 0 -> n + m < 0.
Proof.
intros. rewrite <- (add_0_l 0). now apply add_lt_mono.
Qed.

Theorem add_neg_nonpos : forall n m, n < 0 -> m <= 0 -> n + m < 0.
Proof.
intros. rewrite <- (add_0_l 0). now apply add_lt_le_mono.
Qed.

Theorem add_nonpos_neg : forall n m, n <= 0 -> m < 0 -> n + m < 0.
Proof.
intros. rewrite <- (add_0_l 0). now apply add_le_lt_mono.
Qed.

Theorem add_nonpos_nonpos : forall n m, n <= 0 -> m <= 0 -> n + m <= 0.
Proof.
intros. rewrite <- (add_0_l 0). now apply add_le_mono.
Qed.

(** Sub and order *)

Theorem lt_0_sub : forall n m, 0 < m - n <-> n < m.
Proof.
intros n m. now rewrite (add_lt_mono_r _ _ n), add_0_l, sub_simpl_r.
Qed.

Notation sub_pos := lt_0_sub (only parsing).

Theorem le_0_sub : forall n m, 0 <= m - n <-> n <= m.
Proof.
intros n m. now rewrite (add_le_mono_r _ _ n), add_0_l, sub_simpl_r.
Qed.

Notation sub_nonneg := le_0_sub (only parsing).

Theorem lt_sub_0 : forall n m, n - m < 0 <-> n < m.
Proof.
intros n m. now rewrite (add_lt_mono_r _ _ m), add_0_l, sub_simpl_r.
Qed.

Notation sub_neg := lt_sub_0 (only parsing).

Theorem le_sub_0 : forall n m, n - m <= 0 <-> n <= m.
Proof.
intros n m. now rewrite (add_le_mono_r _ _ m), add_0_l, sub_simpl_r.
Qed.

Notation sub_nonpos := le_sub_0 (only parsing).

Theorem opp_lt_mono : forall n m, n < m <-> - m < - n.
Proof.
intros n m. now rewrite <- lt_0_sub, <- add_opp_l, <- sub_opp_r, lt_0_sub.
Qed.

Theorem opp_le_mono : forall n m, n <= m <-> - m <= - n.
Proof.
intros n m. now rewrite <- le_0_sub, <- add_opp_l, <- sub_opp_r, le_0_sub.
Qed.

Theorem opp_pos_neg : forall n, 0 < - n <-> n < 0.
Proof.
intro n; now rewrite (opp_lt_mono n 0), opp_0.
Qed.

Theorem opp_neg_pos : forall n, - n < 0 <-> 0 < n.
Proof.
intro n. now rewrite (opp_lt_mono 0 n), opp_0.
Qed.

Theorem opp_nonneg_nonpos : forall n, 0 <= - n <-> n <= 0.
Proof.
intro n; now rewrite (opp_le_mono n 0), opp_0.
Qed.

Theorem opp_nonpos_nonneg : forall n, - n <= 0 <-> 0 <= n.
Proof.
intro n. now rewrite (opp_le_mono 0 n), opp_0.
Qed.

Theorem lt_m1_0 : -1 < 0.
Proof.
apply opp_neg_pos, lt_0_1.
Qed.

Theorem sub_lt_mono_l : forall n m p, n < m <-> p - m < p - n.
Proof.
intros. now rewrite <- 2 add_opp_r, <- add_lt_mono_l, opp_lt_mono.
Qed.

Theorem sub_lt_mono_r : forall n m p, n < m <-> n - p < m - p.
Proof.
intros. now rewrite <- 2 add_opp_r, add_lt_mono_r.
Qed.

Theorem sub_lt_mono : forall n m p q, n < m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply lt_trans with (m - p);
[now apply sub_lt_mono_r | now apply sub_lt_mono_l].
Qed.

Theorem sub_le_mono_l : forall n m p, n <= m <-> p - m <= p - n.
Proof.
intros. now rewrite <- 2 add_opp_r, <- add_le_mono_l, opp_le_mono.
Qed.

Theorem sub_le_mono_r : forall n m p, n <= m <-> n - p <= m - p.
Proof.
intros. now rewrite <- 2 add_opp_r, add_le_mono_r.
Qed.

Theorem sub_le_mono : forall n m p q, n <= m -> q <= p -> n - p <= m - q.
Proof.
intros n m p q H1 H2.
apply le_trans with (m - p);
[now apply sub_le_mono_r | now apply sub_le_mono_l].
Qed.

Theorem sub_lt_le_mono : forall n m p q, n < m -> q <= p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply lt_le_trans with (m - p);
[now apply sub_lt_mono_r | now apply sub_le_mono_l].
Qed.

Theorem sub_le_lt_mono : forall n m p q, n <= m -> q < p -> n - p < m - q.
Proof.
intros n m p q H1 H2.
apply le_lt_trans with (m - p);
[now apply sub_le_mono_r | now apply sub_lt_mono_l].
Qed.

Theorem le_lt_sub_lt : forall n m p q, n <= m -> p - n < q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (le_lt_add_lt (- m) (- n));
[now apply -> opp_le_mono | now rewrite 2 add_opp_r].
Qed.

Theorem lt_le_sub_lt : forall n m p q, n < m -> p - n <= q - m -> p < q.
Proof.
intros n m p q H1 H2. apply (lt_le_add_lt (- m) (- n));
[now apply -> opp_lt_mono | now rewrite 2 add_opp_r].
Qed.

Theorem le_le_sub_lt : forall n m p q, n <= m -> p - n <= q - m -> p <= q.
Proof.
intros n m p q H1 H2. apply (le_le_add_le (- m) (- n));
[now apply -> opp_le_mono | now rewrite 2 add_opp_r].
Qed.

Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p.
Proof.
intros n m p. now rewrite (sub_lt_mono_r _ _ p), add_simpl_r.
Qed.

Theorem le_add_le_sub_r : forall n m p, n + p <= m <-> n <= m - p.
Proof.
intros n m p. now rewrite (sub_le_mono_r _ _ p), add_simpl_r.
Qed.

Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n.
Proof.
intros n m p. rewrite add_comm; apply lt_add_lt_sub_r.
Qed.

Theorem le_add_le_sub_l : forall n m p, n + p <= m <-> p <= m - n.
Proof.
intros n m p. rewrite add_comm; apply le_add_le_sub_r.
Qed.

Theorem lt_sub_lt_add_r : forall n m p, n - p < m <-> n < m + p.
Proof.
intros n m p. now rewrite (add_lt_mono_r _ _ p), sub_simpl_r.
Qed.

Theorem le_sub_le_add_r : forall n m p, n - p <= m <-> n <= m + p.
Proof.
intros n m p. now rewrite (add_le_mono_r _ _ p), sub_simpl_r.
Qed.

Theorem lt_sub_lt_add_l : forall n m p, n - m < p <-> n < m + p.
Proof.
intros n m p. rewrite add_comm; apply lt_sub_lt_add_r.
Qed.

Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p.
Proof.
intros n m p. rewrite add_comm; apply le_sub_le_add_r.
Qed.

Theorem lt_sub_lt_add : forall n m p q, n - m < p - q <-> n + q < m + p.
Proof.
intros n m p q. now rewrite lt_sub_lt_add_l, add_sub_assoc, <- lt_add_lt_sub_r.
Qed.

Theorem le_sub_le_add : forall n m p q, n - m <= p - q <-> n + q <= m + p.
Proof.
intros n m p q. now rewrite le_sub_le_add_l, add_sub_assoc, <- le_add_le_sub_r.
Qed.

Theorem lt_sub_pos : forall n m, 0 < m <-> n - m < n.
Proof.
intros n m. now rewrite (sub_lt_mono_l _ _ n), sub_0_r.
Qed.

Theorem le_sub_nonneg : forall n m, 0 <= m <-> n - m <= n.
Proof.
intros n m. now rewrite (sub_le_mono_l _ _ n), sub_0_r.
Qed.

Theorem sub_lt_cases : forall n m p q, n - m < p - q -> n < m \/ q < p.
Proof.
intros. now apply add_lt_cases, lt_sub_lt_add.
Qed.

Theorem sub_le_cases : forall n m p q, n - m <= p - q -> n <= m \/ q <= p.
Proof.
intros. now apply add_le_cases, le_sub_le_add.
Qed.

Theorem sub_neg_cases : forall n m, n - m < 0 -> n < 0 \/ 0 < m.
Proof.
intros.
rewrite <- (opp_neg_pos m). apply add_neg_cases. now rewrite add_opp_r.
Qed.

Theorem sub_pos_cases : forall n m, 0 < n - m -> 0 < n \/ m < 0.
Proof.
intros.
rewrite <- (opp_pos_neg m). apply add_pos_cases. now rewrite add_opp_r.
Qed.

Theorem sub_nonpos_cases : forall n m, n - m <= 0 -> n <= 0 \/ 0 <= m.
Proof.
intros.
rewrite <- (opp_nonpos_nonneg m). apply add_nonpos_cases. now rewrite add_opp_r.
Qed.

Theorem sub_nonneg_cases : forall n m, 0 <= n - m -> 0 <= n \/ m <= 0.
Proof.
intros.
rewrite <- (opp_nonneg_nonpos m). apply add_nonneg_cases. now rewrite add_opp_r.
Qed.

Section PosNeg.

Variable P : Z.t -> Prop.
Hypothesis P_wd : Proper (eq ==> iff) P.

Theorem zero_pos_neg :
  P 0 -> (forall n, 0 < n -> P n /\ P (- n)) -> forall n, P n.
Proof.
intros H1 H2 n. destruct (lt_trichotomy n 0) as [H3 | [H3 | H3]].
apply opp_pos_neg, H2 in H3. destruct H3 as [_ H3].
now rewrite opp_involutive in H3.
now rewrite H3.
apply H2 in H3; now destruct H3.
Qed.

End PosNeg.

Ltac zero_pos_neg n := induction_maker n ltac:(apply zero_pos_neg).

End ZAddOrderProp.