1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** * Int31 numbers defines Z/(2^31)Z, and can hence be equipped
with a ring structure and a ring tactic *)
Require Import Int31 Cyclic31 CyclicAxioms.
Local Open Scope int31_scope.
(** Detection of constants *)
Local Open Scope list_scope.
Ltac isInt31cst_lst l :=
match l with
| nil => constr:true
| ?t::?l => match t with
| D1 => isInt31cst_lst l
| D0 => isInt31cst_lst l
| _ => constr:false
end
| _ => constr:false
end.
Ltac isInt31cst t :=
match t with
| I31 ?i0 ?i1 ?i2 ?i3 ?i4 ?i5 ?i6 ?i7 ?i8 ?i9 ?i10
?i11 ?i12 ?i13 ?i14 ?i15 ?i16 ?i17 ?i18 ?i19 ?i20
?i21 ?i22 ?i23 ?i24 ?i25 ?i26 ?i27 ?i28 ?i29 ?i30 =>
let l :=
constr:(i0::i1::i2::i3::i4::i5::i6::i7::i8::i9::i10
::i11::i12::i13::i14::i15::i16::i17::i18::i19::i20
::i21::i22::i23::i24::i25::i26::i27::i28::i29::i30::nil)
in isInt31cst_lst l
| Int31.On => constr:true
| Int31.In => constr:true
| Int31.Tn => constr:true
| Int31.Twon => constr:true
| _ => constr:false
end.
Ltac Int31cst t :=
match isInt31cst t with
| true => constr:t
| false => constr:NotConstant
end.
(** The generic ring structure inferred from the Cyclic structure *)
Module Int31ring := CyclicRing Int31Cyclic.
(** Unlike in the generic [CyclicRing], we can use Leibniz here. *)
Lemma Int31_canonic : forall x y, phi x = phi y -> x = y.
Proof.
intros x y EQ.
now rewrite <- (phi_inv_phi x), <- (phi_inv_phi y), EQ.
Qed.
Lemma ring_theory_switch_eq :
forall A (R R':A->A->Prop) zero one add mul sub opp,
(forall x y : A, R x y -> R' x y) ->
ring_theory zero one add mul sub opp R ->
ring_theory zero one add mul sub opp R'.
Proof.
intros A R R' zero one add mul sub opp Impl Ring.
constructor; intros; apply Impl; apply Ring.
Qed.
Lemma Int31Ring : ring_theory 0 1 add31 mul31 sub31 opp31 Logic.eq.
Proof.
exact (ring_theory_switch_eq _ _ _ _ _ _ _ _ _ Int31_canonic Int31ring.CyclicRing).
Qed.
Lemma eqb31_eq : forall x y, eqb31 x y = true <-> x=y.
Proof.
unfold eqb31. intros x y.
generalize (Cyclic31.spec_compare x y).
destruct (x ?= y); intuition; subst; auto with zarith; try discriminate.
apply Int31_canonic; auto.
Qed.
Lemma eqb31_correct : forall x y, eqb31 x y = true -> x=y.
Proof. now apply eqb31_eq. Qed.
Add Ring Int31Ring : Int31Ring
(decidable eqb31_correct,
constants [Int31cst]).
Section TestRing.
Let test : forall x y, 1 + x*y + x*x + 1 = 1*1 + 1 + y*x + 1*x*x.
intros. ring.
Qed.
End TestRing.
|