1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** * Int31 numbers defines indeed a cyclic structure : Z/(2^31)Z *)
(**
Author: Arnaud Spiwack (+ Pierre Letouzey)
*)
Require Import List.
Require Import Min.
Require Export Int31.
Require Import Znumtheory.
Require Import Zgcd_alt.
Require Import Zpow_facts.
Require Import BigNumPrelude.
Require Import CyclicAxioms.
Require Import ROmega.
Local Open Scope nat_scope.
Local Open Scope int31_scope.
Section Basics.
(** * Basic results about [iszero], [shiftl], [shiftr] *)
Lemma iszero_eq0 : forall x, iszero x = true -> x=0.
Proof.
destruct x; simpl; intros.
repeat
match goal with H:(if ?d then _ else _) = true |- _ =>
destruct d; try discriminate
end.
reflexivity.
Qed.
Lemma iszero_not_eq0 : forall x, iszero x = false -> x<>0.
Proof.
intros x H Eq; rewrite Eq in H; simpl in *; discriminate.
Qed.
Lemma sneakl_shiftr : forall x,
x = sneakl (firstr x) (shiftr x).
Proof.
destruct x; simpl; auto.
Qed.
Lemma sneakr_shiftl : forall x,
x = sneakr (firstl x) (shiftl x).
Proof.
destruct x; simpl; auto.
Qed.
Lemma twice_zero : forall x,
twice x = 0 <-> twice_plus_one x = 1.
Proof.
destruct x; simpl in *; split;
intro H; injection H; intros; subst; auto.
Qed.
Lemma twice_or_twice_plus_one : forall x,
x = twice (shiftr x) \/ x = twice_plus_one (shiftr x).
Proof.
intros; case_eq (firstr x); intros.
destruct x; simpl in *; rewrite H; auto.
destruct x; simpl in *; rewrite H; auto.
Qed.
(** * Iterated shift to the right *)
Definition nshiftr n x := iter_nat n _ shiftr x.
Lemma nshiftr_S :
forall n x, nshiftr (S n) x = shiftr (nshiftr n x).
Proof.
reflexivity.
Qed.
Lemma nshiftr_S_tail :
forall n x, nshiftr (S n) x = nshiftr n (shiftr x).
Proof.
induction n; simpl; auto.
intros; rewrite nshiftr_S, IHn, nshiftr_S; auto.
Qed.
Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0.
Proof.
induction n; simpl; auto.
rewrite nshiftr_S, IHn; auto.
Qed.
Lemma nshiftr_size : forall x, nshiftr size x = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftr_above_size : forall k x, size<=k ->
nshiftr k x = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
induction (k-size)%nat; auto.
rewrite nshiftr_size; auto.
simpl; rewrite nshiftr_S, IHn; auto.
Qed.
(** * Iterated shift to the left *)
Definition nshiftl n x := iter_nat n _ shiftl x.
Lemma nshiftl_S :
forall n x, nshiftl (S n) x = shiftl (nshiftl n x).
Proof.
reflexivity.
Qed.
Lemma nshiftl_S_tail :
forall n x, nshiftl (S n) x = nshiftl n (shiftl x).
Proof.
induction n; simpl; auto.
intros; rewrite nshiftl_S, IHn, nshiftl_S; auto.
Qed.
Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0.
Proof.
induction n; simpl; auto.
rewrite nshiftl_S, IHn; auto.
Qed.
Lemma nshiftl_size : forall x, nshiftl size x = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftl_above_size : forall k x, size<=k ->
nshiftl k x = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
induction (k-size)%nat; auto.
rewrite nshiftl_size; auto.
simpl; rewrite nshiftl_S, IHn; auto.
Qed.
Lemma firstr_firstl :
forall x, firstr x = firstl (nshiftl (pred size) x).
Proof.
destruct x; simpl; auto.
Qed.
Lemma firstl_firstr :
forall x, firstl x = firstr (nshiftr (pred size) x).
Proof.
destruct x; simpl; auto.
Qed.
(** More advanced results about [nshiftr] *)
Lemma nshiftr_predsize_0_firstl : forall x,
nshiftr (pred size) x = 0 -> firstl x = D0.
Proof.
destruct x; compute; intros H; injection H; intros; subst; auto.
Qed.
Lemma nshiftr_0_propagates : forall n p x, n <= p ->
nshiftr n x = 0 -> nshiftr p x = 0.
Proof.
intros.
replace p with ((p-n)+n)%nat by omega.
induction (p-n)%nat.
simpl; auto.
simpl; rewrite nshiftr_S; rewrite IHn0; auto.
Qed.
Lemma nshiftr_0_firstl : forall n x, n < size ->
nshiftr n x = 0 -> firstl x = D0.
Proof.
intros.
apply nshiftr_predsize_0_firstl.
apply nshiftr_0_propagates with n; auto; omega.
Qed.
(** * Some induction principles over [int31] *)
(** Not used for the moment. Are they really useful ? *)
Lemma int31_ind_sneakl : forall P : int31->Prop,
P 0 ->
(forall x d, P x -> P (sneakl d x)) ->
forall x, P x.
Proof.
intros.
assert (forall n, n<=size -> P (nshiftr (size - n) x)).
induction n; intros.
rewrite nshiftr_size; auto.
rewrite sneakl_shiftr.
apply H0.
change (P (nshiftr (S (size - S n)) x)).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; omega.
change x with (nshiftr (size-size) x); auto.
Qed.
Lemma int31_ind_twice : forall P : int31->Prop,
P 0 ->
(forall x, P x -> P (twice x)) ->
(forall x, P x -> P (twice_plus_one x)) ->
forall x, P x.
Proof.
induction x using int31_ind_sneakl; auto.
destruct d; auto.
Qed.
(** * Some generic results about [recr] *)
Section Recr.
(** [recr] satisfies the fixpoint equation used for its definition. *)
Variable (A:Type)(case0:A)(caserec:digits->int31->A->A).
Lemma recr_aux_eqn : forall n x, iszero x = false ->
recr_aux (S n) A case0 caserec x =
caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)).
Proof.
intros; simpl; rewrite H; auto.
Qed.
Lemma recr_aux_converges :
forall n p x, n <= size -> n <= p ->
recr_aux n A case0 caserec (nshiftr (size - n) x) =
recr_aux p A case0 caserec (nshiftr (size - n) x).
Proof.
induction n.
simpl; intros.
rewrite nshiftr_size; destruct p; simpl; auto.
intros.
destruct p.
inversion H0.
unfold recr_aux; fold recr_aux.
destruct (iszero (nshiftr (size - S n) x)); auto.
f_equal.
change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; auto with arith.
Qed.
Lemma recr_eqn : forall x, iszero x = false ->
recr A case0 caserec x =
caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)).
Proof.
intros.
unfold recr.
change x with (nshiftr (size - size) x).
rewrite (recr_aux_converges size (S size)); auto with arith.
rewrite recr_aux_eqn; auto.
Qed.
(** [recr] is usually equivalent to a variant [recrbis]
written without [iszero] check. *)
Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
let si := shiftr i in
caserec (firstr i) si (recrbis_aux next A case0 caserec si)
end.
Definition recrbis := recrbis_aux size.
Hypothesis case0_caserec : caserec D0 0 case0 = case0.
Lemma recrbis_aux_equiv : forall n x,
recrbis_aux n A case0 caserec x = recr_aux n A case0 caserec x.
Proof.
induction n; simpl; auto; intros.
case_eq (iszero x); intros; [ | f_equal; auto ].
rewrite (iszero_eq0 _ H); simpl; auto.
replace (recrbis_aux n A case0 caserec 0) with case0; auto.
clear H IHn; induction n; simpl; congruence.
Qed.
Lemma recrbis_equiv : forall x,
recrbis A case0 caserec x = recr A case0 caserec x.
Proof.
intros; apply recrbis_aux_equiv; auto.
Qed.
End Recr.
(** * Incrementation *)
Section Incr.
(** Variant of [incr] via [recrbis] *)
Let Incr (b : digits) (si rec : int31) :=
match b with
| D0 => sneakl D1 si
| D1 => sneakl D0 rec
end.
Definition incrbis_aux n x := recrbis_aux n _ In Incr x.
Lemma incrbis_aux_equiv : forall x, incrbis_aux size x = incr x.
Proof.
unfold incr, recr, incrbis_aux; fold Incr; intros.
apply recrbis_aux_equiv; auto.
Qed.
(** Recursive equations satisfied by [incr] *)
Lemma incr_eqn1 :
forall x, firstr x = D0 -> incr x = twice_plus_one (shiftr x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0); simpl; auto.
unfold incr; rewrite recr_eqn; fold incr; auto.
rewrite H; auto.
Qed.
Lemma incr_eqn2 :
forall x, firstr x = D1 -> incr x = twice (incr (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
unfold incr; rewrite recr_eqn; fold incr; auto.
rewrite H; auto.
Qed.
Lemma incr_twice : forall x, incr (twice x) = twice_plus_one x.
Proof.
intros.
rewrite incr_eqn1; destruct x; simpl; auto.
Qed.
Lemma incr_twice_plus_one_firstl :
forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
rewrite incr_eqn2; [ | destruct x; simpl; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
(** The previous result is actually true even without the
constraint on [firstl], but this is harder to prove
(see later). *)
End Incr.
(** * Conversion to [Z] : the [phi] function *)
Section Phi.
(** Variant of [phi] via [recrbis] *)
Let Phi := fun b (_:int31) =>
match b with D0 => Zdouble | D1 => Zdouble_plus_one end.
Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x.
Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x.
Proof.
unfold phi, recr, phibis_aux; fold Phi; intros.
apply recrbis_aux_equiv; auto.
Qed.
(** Recursive equations satisfied by [phi] *)
Lemma phi_eqn1 : forall x, firstr x = D0 ->
phi x = Zdouble (phi (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0); simpl; auto.
intros; unfold phi; rewrite recr_eqn; fold phi; auto.
rewrite H; auto.
Qed.
Lemma phi_eqn2 : forall x, firstr x = D1 ->
phi x = Zdouble_plus_one (phi (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
intros; unfold phi; rewrite recr_eqn; fold phi; auto.
rewrite H; auto.
Qed.
Lemma phi_twice_firstl : forall x, firstl x = D0 ->
phi (twice x) = Zdouble (phi x).
Proof.
intros.
rewrite phi_eqn1; auto; [ | destruct x; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
phi (twice_plus_one x) = Zdouble_plus_one (phi x).
Proof.
intros.
rewrite phi_eqn2; auto; [ | destruct x; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
End Phi.
(** [phi x] is positive and lower than [2^31] *)
Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z.
Proof.
induction n.
simpl; unfold phibis_aux; simpl; auto with zarith.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr x)).
destruct (firstr x).
specialize IHn with (shiftr x); rewrite Zdouble_mult; omega.
specialize IHn with (shiftr x); rewrite Zdouble_plus_one_mult; omega.
Qed.
Lemma phibis_aux_bounded :
forall n x, n <= size ->
(phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z_of_nat n))%Z.
Proof.
induction n.
simpl; unfold phibis_aux; simpl; auto with zarith.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr (size - S n) x))).
assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
replace (size - n)%nat with (S (size - (S n))) by omega.
simpl; auto.
rewrite H0.
assert (H1 : n <= size) by omega.
specialize (IHn x H1).
set (y:=phibis_aux n (nshiftr (size - n) x)) in *.
rewrite inj_S, Zpower_Zsucc; auto with zarith.
case_eq (firstr (nshiftr (size - S n) x)); intros.
rewrite Zdouble_mult; auto with zarith.
rewrite Zdouble_plus_one_mult; auto with zarith.
Qed.
Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z_of_nat size))%Z.
Proof.
intros.
rewrite <- phibis_aux_equiv.
split.
apply phibis_aux_pos.
change x with (nshiftr (size-size) x).
apply phibis_aux_bounded; auto.
Qed.
Lemma phibis_aux_lowerbound :
forall n x, firstr (nshiftr n x) = D1 ->
(2 ^ Z_of_nat n <= phibis_aux (S n) x)%Z.
Proof.
induction n.
intros.
unfold nshiftr in H; simpl in *.
unfold phibis_aux, recrbis_aux.
rewrite H, Zdouble_plus_one_mult; omega.
intros.
remember (S n) as m.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux m (shiftr x)).
subst m.
rewrite inj_S, Zpower_Zsucc; auto with zarith.
assert (2^(Z_of_nat n) <= phibis_aux (S n) (shiftr x))%Z.
apply IHn.
rewrite <- nshiftr_S_tail; auto.
destruct (firstr x).
change (Zdouble (phibis_aux (S n) (shiftr x))) with
(2*(phibis_aux (S n) (shiftr x)))%Z.
omega.
rewrite Zdouble_plus_one_mult; omega.
Qed.
Lemma phi_lowerbound :
forall x, firstl x = D1 -> (2^(Z_of_nat (pred size)) <= phi x)%Z.
Proof.
intros.
generalize (phibis_aux_lowerbound (pred size) x).
rewrite <- firstl_firstr.
change (S (pred size)) with size; auto.
rewrite phibis_aux_equiv; auto.
Qed.
(** * Equivalence modulo [2^n] *)
Section EqShiftL.
(** After killing [n] bits at the left, are the numbers equal ?*)
Definition EqShiftL n x y :=
nshiftl n x = nshiftl n y.
Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
Proof.
unfold EqShiftL; intros; unfold nshiftl; simpl; split; auto.
Qed.
Lemma EqShiftL_size : forall k x y, size<=k -> EqShiftL k x y.
Proof.
red; intros; rewrite 2 nshiftl_above_size; auto.
Qed.
Lemma EqShiftL_le : forall k k' x y, k <= k' ->
EqShiftL k x y -> EqShiftL k' x y.
Proof.
unfold EqShiftL; intros.
replace k' with ((k'-k)+k)%nat by omega.
remember (k'-k)%nat as n.
clear Heqn H k'.
induction n; simpl; auto.
rewrite 2 nshiftl_S; f_equal; auto.
Qed.
Lemma EqShiftL_firstr : forall k x y, k < size ->
EqShiftL k x y -> firstr x = firstr y.
Proof.
intros.
rewrite 2 firstr_firstl.
f_equal.
apply EqShiftL_le with k; auto.
unfold size.
auto with arith.
Qed.
Lemma EqShiftL_twice : forall k x y,
EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y.
Proof.
intros; unfold EqShiftL.
rewrite 2 nshiftl_S_tail; split; auto.
Qed.
(** * From int31 to list of digits. *)
(** Lower (=rightmost) bits comes first. *)
Definition i2l := recrbis _ nil (fun d _ rec => d::rec).
Lemma i2l_length : forall x, length (i2l x) = size.
Proof.
intros; reflexivity.
Qed.
Fixpoint lshiftl l x :=
match l with
| nil => x
| d::l => sneakl d (lshiftl l x)
end.
Definition l2i l := lshiftl l On.
Lemma l2i_i2l : forall x, l2i (i2l x) = x.
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_sneakr : forall x d,
i2l (sneakr d x) = tail (i2l x) ++ d::nil.
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_sneakl : forall x d,
i2l (sneakl d x) = d :: removelast (i2l x).
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_l2i : forall l, length l = size ->
i2l (l2i l) = l.
Proof.
repeat (destruct l as [ |? l]; [intros; discriminate | ]).
destruct l; [ | intros; discriminate].
intros _; compute; auto.
Qed.
Fixpoint cstlist (A:Type)(a:A) n :=
match n with
| O => nil
| S n => a::cstlist _ a n
end.
Lemma i2l_nshiftl : forall n x, n<=size ->
i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
Proof.
induction n.
intros.
assert (firstn (size-0) (i2l x) = i2l x).
rewrite <- minus_n_O, <- (i2l_length x).
induction (i2l x); simpl; f_equal; auto.
rewrite H0; clear H0.
reflexivity.
intros.
rewrite nshiftl_S.
unfold shiftl; rewrite i2l_sneakl.
simpl cstlist.
rewrite <- app_comm_cons; f_equal.
rewrite IHn; [ | omega].
rewrite removelast_app.
f_equal.
replace (size-n)%nat with (S (size - S n))%nat by omega.
rewrite removelast_firstn; auto.
rewrite i2l_length; omega.
generalize (firstn_length (size-n) (i2l x)).
rewrite i2l_length.
intros H0 H1; rewrite H1 in H0.
rewrite min_l in H0 by omega.
simpl length in H0.
omega.
Qed.
(** [i2l] can be used to define a relation equivalent to [EqShiftL] *)
Lemma EqShiftL_i2l : forall k x y,
EqShiftL k x y <-> firstn (size-k) (i2l x) = firstn (size-k) (i2l y).
Proof.
intros.
destruct (le_lt_dec size k).
split; intros.
replace (size-k)%nat with O by omega.
unfold firstn; auto.
apply EqShiftL_size; auto.
unfold EqShiftL.
assert (k <= size) by omega.
split; intros.
assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto).
rewrite 2 i2l_nshiftl in H1; auto.
eapply app_inv_head; eauto.
assert (i2l (nshiftl k x) = i2l (nshiftl k y)).
rewrite 2 i2l_nshiftl; auto.
f_equal; auto.
rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)).
f_equal; auto.
Qed.
(** This equivalence allows to prove easily the following delicate
result *)
Lemma EqShiftL_twice_plus_one : forall k x y,
EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y.
Proof.
intros.
destruct (le_lt_dec size k).
split; intros; apply EqShiftL_size; auto.
rewrite 2 EqShiftL_i2l.
unfold twice_plus_one.
rewrite 2 i2l_sneakl.
replace (size-k)%nat with (S (size - S k))%nat by omega.
remember (size - S k)%nat as n.
remember (i2l x) as lx.
remember (i2l y) as ly.
simpl.
rewrite 2 firstn_removelast.
split; intros.
injection H; auto.
f_equal; auto.
subst ly n; rewrite i2l_length; omega.
subst lx n; rewrite i2l_length; omega.
Qed.
Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
EqShiftL (S k) (shiftr x) (shiftr y).
Proof.
intros.
destruct (le_lt_dec size (S k)).
apply EqShiftL_size; auto.
case_eq (firstr x); intros.
rewrite <- EqShiftL_twice.
unfold twice; rewrite <- H0.
rewrite <- sneakl_shiftr.
rewrite (EqShiftL_firstr k x y); auto.
rewrite <- sneakl_shiftr; auto.
omega.
rewrite <- EqShiftL_twice_plus_one.
unfold twice_plus_one; rewrite <- H0.
rewrite <- sneakl_shiftr.
rewrite (EqShiftL_firstr k x y); auto.
rewrite <- sneakl_shiftr; auto.
omega.
Qed.
Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
(n+k=S size)%nat ->
EqShiftL k x y ->
EqShiftL k (incrbis_aux n x) (incrbis_aux n y).
Proof.
induction n; simpl; intros.
red; auto.
destruct (eq_nat_dec k size).
subst k; apply EqShiftL_size; auto.
unfold incrbis_aux; simpl;
fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)).
rewrite (EqShiftL_firstr k x y); auto; try omega.
case_eq (firstr y); intros.
rewrite EqShiftL_twice_plus_one.
apply EqShiftL_shiftr; auto.
rewrite EqShiftL_twice.
apply IHn; try omega.
apply EqShiftL_shiftr; auto.
Qed.
Lemma EqShiftL_incr : forall x y,
EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y).
Proof.
intros.
rewrite <- 2 incrbis_aux_equiv.
apply EqShiftL_incrbis; auto.
Qed.
End EqShiftL.
(** * More equations about [incr] *)
Lemma incr_twice_plus_one :
forall x, incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
rewrite incr_eqn2; [ | destruct x; simpl; auto].
apply EqShiftL_incr.
red; destruct x; simpl; auto.
Qed.
Lemma incr_firstr : forall x, firstr (incr x) <> firstr x.
Proof.
intros.
case_eq (firstr x); intros.
rewrite incr_eqn1; auto.
destruct (shiftr x); simpl; discriminate.
rewrite incr_eqn2; auto.
destruct (incr (shiftr x)); simpl; discriminate.
Qed.
Lemma incr_inv : forall x y,
incr x = twice_plus_one y -> x = twice y.
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in *; simpl in *.
change (incr 0) with 1 in H.
symmetry; rewrite twice_zero; auto.
case_eq (firstr x); intros.
rewrite incr_eqn1 in H; auto.
clear H0; destruct x; destruct y; simpl in *.
injection H; intros; subst; auto.
elim (incr_firstr x).
rewrite H1, H; destruct y; simpl; auto.
Qed.
(** * Conversion from [Z] : the [phi_inv] function *)
(** First, recursive equations *)
Lemma phi_inv_double_plus_one : forall z,
phi_inv (Zdouble_plus_one z) = twice_plus_one (phi_inv z).
Proof.
destruct z; simpl; auto.
induction p; simpl.
rewrite 2 incr_twice; auto.
rewrite incr_twice, incr_twice_plus_one.
f_equal.
apply incr_inv; auto.
auto.
Qed.
Lemma phi_inv_double : forall z,
phi_inv (Zdouble z) = twice (phi_inv z).
Proof.
destruct z; simpl; auto.
rewrite incr_twice_plus_one; auto.
Qed.
Lemma phi_inv_incr : forall z,
phi_inv (Zsucc z) = incr (phi_inv z).
Proof.
destruct z.
simpl; auto.
simpl; auto.
induction p; simpl; auto.
rewrite Pplus_one_succ_r, IHp, incr_twice_plus_one; auto.
rewrite incr_twice; auto.
simpl; auto.
destruct p; simpl; auto.
rewrite incr_twice; auto.
f_equal.
rewrite incr_twice_plus_one; auto.
induction p; simpl; auto.
rewrite incr_twice; auto.
f_equal.
rewrite incr_twice_plus_one; auto.
Qed.
(** [phi_inv o inv], the always-exact and easy-to-prove trip :
from int31 to Z and then back to int31. *)
Lemma phi_inv_phi_aux :
forall n x, n <= size ->
phi_inv (phibis_aux n (nshiftr (size-n) x)) =
nshiftr (size-n) x.
Proof.
induction n.
intros; simpl.
rewrite nshiftr_size; auto.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr (size-S n) x))).
assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
replace (size - n)%nat with (S (size - (S n))); auto; omega.
rewrite H0.
case_eq (firstr (nshiftr (size - S n) x)); intros.
rewrite phi_inv_double.
rewrite IHn by omega.
rewrite <- H0.
remember (nshiftr (size - S n) x) as y.
destruct y; simpl in H1; rewrite H1; auto.
rewrite phi_inv_double_plus_one.
rewrite IHn by omega.
rewrite <- H0.
remember (nshiftr (size - S n) x) as y.
destruct y; simpl in H1; rewrite H1; auto.
Qed.
Lemma phi_inv_phi : forall x, phi_inv (phi x) = x.
Proof.
intros.
rewrite <- phibis_aux_equiv.
replace x with (nshiftr (size - size) x) by auto.
apply phi_inv_phi_aux; auto.
Qed.
(** The other composition [phi o phi_inv] is harder to prove correct.
In particular, an overflow can happen, so a modulo is needed.
For the moment, we proceed via several steps, the first one
being a detour to [positive_to_in31]. *)
(** * [positive_to_int31] *)
(** A variant of [p2i] with [twice] and [twice_plus_one] instead of
[2*i] and [2*i+1] *)
Fixpoint p2ibis n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
| xO p => let (r,i) := p2ibis n p in (r, twice i)
| xI p => let (r,i) := p2ibis n p in (r, twice_plus_one i)
| xH => (N0, In)
end
end.
Lemma p2ibis_bounded : forall n p,
nshiftr n (snd (p2ibis n p)) = 0.
Proof.
induction n.
simpl; intros; auto.
simpl; intros.
destruct p; simpl.
specialize IHn with p.
destruct (p2ibis n p); simpl in *.
rewrite nshiftr_S_tail.
destruct (le_lt_dec size n).
rewrite nshiftr_above_size; auto.
assert (H:=nshiftr_0_firstl _ _ l IHn).
replace (shiftr (twice_plus_one i)) with i; auto.
destruct i; simpl in *; rewrite H; auto.
specialize IHn with p.
destruct (p2ibis n p); simpl in *.
rewrite nshiftr_S_tail.
destruct (le_lt_dec size n).
rewrite nshiftr_above_size; auto.
assert (H:=nshiftr_0_firstl _ _ l IHn).
replace (shiftr (twice i)) with i; auto.
destruct i; simpl in *; rewrite H; auto.
rewrite nshiftr_S_tail; auto.
replace (shiftr In) with 0; auto.
apply nshiftr_n_0.
Qed.
Lemma p2ibis_spec : forall n p, n<=size ->
Zpos p = ((Z_of_N (fst (p2ibis n p)))*2^(Z_of_nat n) +
phi (snd (p2ibis n p)))%Z.
Proof.
induction n; intros.
simpl; rewrite Pmult_1_r; auto.
replace (2^(Z_of_nat (S n)))%Z with (2*2^(Z_of_nat n))%Z by
(rewrite <- Zpower_Zsucc, <- Zpos_P_of_succ_nat;
auto with zarith).
rewrite (Zmult_comm 2).
assert (n<=size) by omega.
destruct p; simpl; [ | | auto];
specialize (IHn p H0);
generalize (p2ibis_bounded n p);
destruct (p2ibis n p) as (r,i); simpl in *; intros.
change (Zpos p~1) with (2*Zpos p + 1)%Z.
rewrite phi_twice_plus_one_firstl, Zdouble_plus_one_mult.
rewrite IHn; ring.
apply (nshiftr_0_firstl n); auto; try omega.
change (Zpos p~0) with (2*Zpos p)%Z.
rewrite phi_twice_firstl.
change (Zdouble (phi i)) with (2*(phi i))%Z.
rewrite IHn; ring.
apply (nshiftr_0_firstl n); auto; try omega.
Qed.
(** We now prove that this [p2ibis] is related to [phi_inv_positive] *)
Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)).
Proof.
induction n.
intros.
apply EqShiftL_size; auto.
intros.
simpl p2ibis; destruct p; [ | | red; auto];
specialize IHn with p;
destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive;
rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
replace (S (size - S n))%nat with (size - n)%nat by omega;
apply IHn; omega.
Qed.
(** This gives the expected result about [phi o phi_inv], at least
for the positive case. *)
Lemma phi_phi_inv_positive : forall p,
phi (phi_inv_positive p) = (Zpos p) mod (2^(Z_of_nat size)).
Proof.
intros.
replace (phi_inv_positive p) with (snd (p2ibis size p)).
rewrite (p2ibis_spec size p) by auto.
rewrite Zplus_comm, Z_mod_plus.
symmetry; apply Zmod_small.
apply phi_bounded.
auto with zarith.
symmetry.
rewrite <- EqShiftL_zero.
apply (phi_inv_positive_p2ibis size p); auto.
Qed.
(** Moreover, [p2ibis] is also related with [p2i] and hence with
[positive_to_int31]. *)
Lemma double_twice_firstl : forall x, firstl x = D0 -> Twon*x = twice x.
Proof.
intros.
unfold mul31.
rewrite <- Zdouble_mult, <- phi_twice_firstl, phi_inv_phi; auto.
Qed.
Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
Twon*x+In = twice_plus_one x.
Proof.
intros.
rewrite double_twice_firstl; auto.
unfold add31.
rewrite phi_twice_firstl, <- Zdouble_plus_one_mult,
<- phi_twice_plus_one_firstl, phi_inv_phi; auto.
Qed.
Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
p2i n p = p2ibis n p.
Proof.
induction n; simpl; auto; intros.
destruct p; auto; specialize IHn with p;
generalize (p2ibis_bounded n p);
rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
f_equal; auto.
apply double_twice_plus_one_firstl.
apply (nshiftr_0_firstl n); auto; omega.
apply double_twice_firstl.
apply (nshiftr_0_firstl n); auto; omega.
Qed.
Lemma positive_to_int31_phi_inv_positive : forall p,
snd (positive_to_int31 p) = phi_inv_positive p.
Proof.
intros; unfold positive_to_int31.
rewrite p2i_p2ibis; auto.
symmetry.
rewrite <- EqShiftL_zero.
apply (phi_inv_positive_p2ibis size); auto.
Qed.
Lemma positive_to_int31_spec : forall p,
Zpos p = ((Z_of_N (fst (positive_to_int31 p)))*2^(Z_of_nat size) +
phi (snd (positive_to_int31 p)))%Z.
Proof.
unfold positive_to_int31.
intros; rewrite p2i_p2ibis; auto.
apply p2ibis_spec; auto.
Qed.
(** Thanks to the result about [phi o phi_inv_positive], we can
now establish easily the most general results about
[phi o twice] and so one. *)
Lemma phi_twice : forall x,
phi (twice x) = (Zdouble (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_double.
assert (0 <= Zdouble (phi x))%Z.
rewrite Zdouble_mult; generalize (phi_bounded x); omega.
destruct (Zdouble (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
Lemma phi_twice_plus_one : forall x,
phi (twice_plus_one x) = (Zdouble_plus_one (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_double_plus_one.
assert (0 <= Zdouble_plus_one (phi x))%Z.
rewrite Zdouble_plus_one_mult; generalize (phi_bounded x); omega.
destruct (Zdouble_plus_one (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
Lemma phi_incr : forall x,
phi (incr x) = (Zsucc (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_incr.
assert (0 <= Zsucc (phi x))%Z.
change (Zsucc (phi x)) with ((phi x)+1)%Z;
generalize (phi_bounded x); omega.
destruct (Zsucc (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
(** With the previous results, we can deal with [phi o phi_inv] even
in the negative case *)
Lemma phi_phi_inv_negative :
forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z_of_nat size).
Proof.
induction p.
simpl complement_negative.
rewrite phi_incr in IHp.
rewrite incr_twice, phi_twice_plus_one.
remember (phi (complement_negative p)) as q.
rewrite Zdouble_plus_one_mult.
replace (2*q+1)%Z with (2*(Zsucc q)-1)%Z by omega.
rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp.
rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith.
simpl complement_negative.
rewrite incr_twice_plus_one, phi_twice.
remember (phi (incr (complement_negative p))) as q.
rewrite Zdouble_mult, IHp, Zmult_mod_idemp_r; auto with zarith.
simpl; auto.
Qed.
Lemma phi_phi_inv :
forall z, phi (phi_inv z) = z mod 2 ^ (Z_of_nat size).
Proof.
destruct z.
simpl; auto.
apply phi_phi_inv_positive.
apply phi_phi_inv_negative.
Qed.
End Basics.
Section Int31_Op.
(** Nullity test *)
Let w_iszero i := match i ?= 0 with Eq => true | _ => false end.
(** Modulo [2^p] *)
Let w_pos_mod p i :=
match compare31 p 31 with
| Lt => addmuldiv31 p 0 (addmuldiv31 (31-p) i 0)
| _ => i
end.
(** Parity test *)
Let w_iseven i :=
let (_,r) := i/2 in
match r ?= 0 with Eq => true | _ => false end.
Definition int31_op := (mk_znz_op
31%positive (* number of digits *)
31 (* number of digits *)
phi (* conversion to Z *)
positive_to_int31 (* positive -> N*int31 : p => N,i where p = N*2^31+phi i *)
head031 (* number of head 0 *)
tail031 (* number of tail 0 *)
(* Basic constructors *)
0
1
Tn (* 2^31 - 1 *)
(* Comparison *)
compare31
w_iszero
(* Basic arithmetic operations *)
(fun i => 0 -c i)
opp31
(fun i => 0-i-1)
(fun i => i +c 1)
add31c
add31carryc
(fun i => i + 1)
add31
(fun i j => i + j + 1)
(fun i => i -c 1)
sub31c
sub31carryc
(fun i => i - 1)
sub31
(fun i j => i - j - 1)
mul31c
mul31
(fun x => x *c x)
(* special (euclidian) division operations *)
div3121
div31 (* this is supposed to be the special case of division a/b where a > b *)
div31
(* euclidian division remainder *)
(* again special case for a > b *)
(fun i j => let (_,r) := i/j in r)
(fun i j => let (_,r) := i/j in r)
gcd31 (*gcd_gt*)
gcd31 (*gcd*)
(* shift operations *)
addmuldiv31 (*add_mul_div *)
(* modulo 2^p *)
w_pos_mod
(* is i even ? *)
w_iseven
(* square root operations *)
sqrt312 (* sqrt2 *)
sqrt31 (* sqrt *)
).
End Int31_Op.
Section Int31_Spec.
Local Open Scope Z_scope.
Notation "[| x |]" := (phi x) (at level 0, x at level 99).
Local Notation wB := (2 ^ (Z_of_nat size)).
Lemma wB_pos : wB > 0.
Proof.
auto with zarith.
Qed.
Notation "[+| c |]" :=
(interp_carry 1 wB phi c) (at level 0, x at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB phi c) (at level 0, x at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z wB phi x) (at level 0, x at level 99).
Lemma spec_zdigits : [| 31 |] = 31.
Proof.
reflexivity.
Qed.
Lemma spec_more_than_1_digit: 1 < 31.
Proof.
auto with zarith.
Qed.
Lemma spec_0 : [| 0 |] = 0.
Proof.
reflexivity.
Qed.
Lemma spec_1 : [| 1 |] = 1.
Proof.
reflexivity.
Qed.
Lemma spec_Bm1 : [| Tn |] = wB - 1.
Proof.
reflexivity.
Qed.
Lemma spec_compare : forall x y,
match (x ?= y)%int31 with
| Eq => [|x|] = [|y|]
| Lt => [|x|] < [|y|]
| Gt => [|x|] > [|y|]
end.
Proof.
clear; unfold compare31; simpl; intros.
case_eq ([|x|] ?= [|y|]); auto.
intros; apply Zcompare_Eq_eq; auto.
Qed.
(** Addition *)
Lemma spec_add_c : forall x y, [+|add31c x y|] = [|x|] + [|y|].
Proof.
intros; unfold add31c, add31, interp_carry; rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y).
unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
destruct (Z_lt_le_dec (X+Y) wB).
contradict H1; auto using Zmod_small with zarith.
rewrite <- (Z_mod_plus_full (X+Y) (-1) wB).
rewrite Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X+Y) mod wB) (X+Y)); intros Heq.
destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_succ_c : forall x, [+|add31c x 1|] = [|x|] + 1.
Proof.
intros; apply spec_add_c.
Qed.
Lemma spec_add_carry_c : forall x y, [+|add31carryc x y|] = [|x|] + [|y|] + 1.
Proof.
intros.
unfold add31carryc, interp_carry; rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1).
unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
destruct (Z_lt_le_dec (X+Y+1) wB).
contradict H1; auto using Zmod_small with zarith.
rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB).
rewrite Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq.
destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_add : forall x y, [|x+y|] = ([|x|] + [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_add_carry :
forall x y, [|x+y+1|] = ([|x|] + [|y|] + 1) mod wB.
Proof.
unfold add31; intros.
repeat rewrite phi_phi_inv.
apply Zplus_mod_idemp_l.
Qed.
Lemma spec_succ : forall x, [|x+1|] = ([|x|] + 1) mod wB.
Proof.
intros; rewrite <- spec_1; apply spec_add.
Qed.
(** Substraction *)
Lemma spec_sub_c : forall x y, [-|sub31c x y|] = [|x|] - [|y|].
Proof.
unfold sub31c, sub31, interp_carry; intros.
rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y).
unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
destruct (Z_lt_le_dec (X-Y) 0).
rewrite <- (Z_mod_plus_full (X-Y) 1 wB).
rewrite Zmod_small; romega.
contradict H1; apply Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X-Y) mod wB) (X-Y)); intros Heq.
destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_sub_carry_c : forall x y, [-|sub31carryc x y|] = [|x|] - [|y|] - 1.
Proof.
unfold sub31carryc, sub31, interp_carry; intros.
rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1).
unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
destruct (Z_lt_le_dec (X-Y-1) 0).
rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB).
rewrite Zmod_small; romega.
contradict H1; apply Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq.
destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_sub : forall x y, [|x-y|] = ([|x|] - [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_sub_carry :
forall x y, [|x-y-1|] = ([|x|] - [|y|] - 1) mod wB.
Proof.
unfold sub31; intros.
repeat rewrite phi_phi_inv.
apply Zminus_mod_idemp_l.
Qed.
Lemma spec_opp_c : forall x, [-|sub31c 0 x|] = -[|x|].
Proof.
intros; apply spec_sub_c.
Qed.
Lemma spec_opp : forall x, [|0 - x|] = (-[|x|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_opp_carry : forall x, [|0 - x - 1|] = wB - [|x|] - 1.
Proof.
unfold sub31; intros.
repeat rewrite phi_phi_inv.
change [|1|] with 1; change [|0|] with 0.
rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB).
rewrite Zminus_mod_idemp_l.
rewrite Zmod_small; generalize (phi_bounded x); romega.
Qed.
Lemma spec_pred_c : forall x, [-|sub31c x 1|] = [|x|] - 1.
Proof.
intros; apply spec_sub_c.
Qed.
Lemma spec_pred : forall x, [|x-1|] = ([|x|] - 1) mod wB.
Proof.
intros; apply spec_sub.
Qed.
(** Multiplication *)
Lemma phi2_phi_inv2 : forall x, [||phi_inv2 x||] = x mod (wB^2).
Proof.
assert (forall z, (z / wB) mod wB * wB + z mod wB = z mod wB ^ 2).
intros.
assert ((z/wB) mod wB = z/wB - (z/wB/wB)*wB).
rewrite (Z_div_mod_eq (z/wB) wB wB_pos) at 2; ring.
assert (z mod wB = z - (z/wB)*wB).
rewrite (Z_div_mod_eq z wB wB_pos) at 2; ring.
rewrite H.
rewrite H0 at 1.
ring_simplify.
rewrite Zdiv_Zdiv; auto with zarith.
rewrite (Z_div_mod_eq z (wB*wB)) at 2; auto with zarith.
change (wB*wB) with (wB^2); ring.
unfold phi_inv2.
destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
change base with wB; auto.
Qed.
Lemma spec_mul_c : forall x y, [|| mul31c x y ||] = [|x|] * [|y|].
Proof.
unfold mul31c; intros.
rewrite phi2_phi_inv2.
apply Zmod_small.
generalize (phi_bounded x)(phi_bounded y); intros.
change (wB^2) with (wB * wB).
auto using Zmult_lt_compat with zarith.
Qed.
Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_square_c : forall x, [|| mul31c x x ||] = [|x|] * [|x|].
Proof.
intros; apply spec_mul_c.
Qed.
(** Division *)
Lemma spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := div3121 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
unfold div3121; intros.
generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros.
assert ([|b|]>0) by (auto with zarith).
generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4).
unfold Zdiv; destruct (Zdiv_eucl (phi2 a1 a2) [|b|]); simpl.
rewrite ?phi_phi_inv.
destruct 1; intros.
unfold phi2 in *.
change base with wB; change base with wB in H5.
change (Zpower_pos 2 31) with wB; change (Zpower_pos 2 31) with wB in H.
rewrite H5, Zmult_comm.
replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
replace (z mod wB) with z; auto with zarith.
symmetry; apply Zmod_small.
split.
apply H7; change base with wB; auto with zarith.
apply Zmult_gt_0_lt_reg_r with [|b|].
omega.
rewrite Zmult_comm.
apply Zle_lt_trans with ([|b|]*z+z0).
omega.
rewrite <- H5.
apply Zle_lt_trans with ([|a1|]*wB+(wB-1)).
omega.
replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring.
assert (wB*([|a1|]+1) <= wB*[|b|]); try omega.
apply Zmult_le_compat; omega.
Qed.
Lemma spec_div : forall a b, 0 < [|b|] ->
let (q,r) := div31 a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
unfold div31; intros.
assert ([|b|]>0) by (auto with zarith).
generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0).
unfold Zdiv; destruct (Zdiv_eucl [|a|] [|b|]); simpl.
rewrite ?phi_phi_inv.
destruct 1; intros.
rewrite H1, Zmult_comm.
generalize (phi_bounded a)(phi_bounded b); intros.
replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
replace (z mod wB) with z; auto with zarith.
symmetry; apply Zmod_small.
split; auto with zarith.
apply Zle_lt_trans with [|a|]; auto with zarith.
rewrite H1.
apply Zle_trans with ([|b|]*z); try omega.
rewrite <- (Zmult_1_l z) at 1.
apply Zmult_le_compat; auto with zarith.
Qed.
Lemma spec_mod : forall a b, 0 < [|b|] ->
[|let (_,r) := (a/b)%int31 in r|] = [|a|] mod [|b|].
Proof.
unfold div31; intros.
assert ([|b|]>0) by (auto with zarith).
unfold Zmod.
generalize (Z_div_mod [|a|] [|b|] H0).
destruct (Zdiv_eucl [|a|] [|b|]); simpl.
rewrite ?phi_phi_inv.
destruct 1; intros.
generalize (phi_bounded b); intros.
apply Zmod_small; omega.
Qed.
Lemma phi_gcd : forall i j,
[|gcd31 i j|] = Zgcdn (2*size) [|j|] [|i|].
Proof.
unfold gcd31.
induction (2*size)%nat; intros.
reflexivity.
simpl.
unfold compare31.
change [|On|] with 0.
generalize (phi_bounded j)(phi_bounded i); intros.
case_eq [|j|]; intros.
simpl; intros.
generalize (Zabs_spec [|i|]); omega.
simpl.
rewrite IHn, H1; f_equal.
rewrite spec_mod, H1; auto.
rewrite H1; compute; auto.
rewrite H1 in H; destruct H as [H _]; compute in H; elim H; auto.
Qed.
Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd31 a b|].
Proof.
intros.
rewrite phi_gcd.
apply Zis_gcd_sym.
apply Zgcdn_is_gcd.
unfold Zgcd_bound.
generalize (phi_bounded b).
destruct [|b|].
unfold size; auto with zarith.
intros (_,H).
cut (Psize p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto].
intros (H,_); compute in H; elim H; auto.
Qed.
Lemma iter_int31_iter_nat : forall A f i a,
iter_int31 i A f a = iter_nat (Zabs_nat [|i|]) A f a.
Proof.
intros.
unfold iter_int31.
rewrite <- recrbis_equiv; auto; unfold recrbis.
rewrite <- phibis_aux_equiv.
revert i a; induction size.
simpl; auto.
simpl; intros.
case_eq (firstr i); intros H; rewrite 2 IHn;
unfold phibis_aux; simpl; rewrite H; fold (phibis_aux n (shiftr i));
generalize (phibis_aux_pos n (shiftr i)); intros;
set (z := phibis_aux n (shiftr i)) in *; clearbody z;
rewrite <- iter_nat_plus.
f_equal.
rewrite Zdouble_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
symmetry; apply Zabs_nat_Zplus; auto with zarith.
change (iter_nat (S (Zabs_nat z + Zabs_nat z)) A f a =
iter_nat (Zabs_nat (Zdouble_plus_one z)) A f a); f_equal.
rewrite Zdouble_plus_one_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
rewrite Zabs_nat_Zplus; auto with zarith.
rewrite Zabs_nat_Zplus; auto with zarith.
change (Zabs_nat 1) with 1%nat; omega.
Qed.
Fixpoint addmuldiv31_alt n i j :=
match n with
| O => i
| S n => addmuldiv31_alt n (sneakl (firstl j) i) (shiftl j)
end.
Lemma addmuldiv31_equiv : forall p x y,
addmuldiv31 p x y = addmuldiv31_alt (Zabs_nat [|p|]) x y.
Proof.
intros.
unfold addmuldiv31.
rewrite iter_int31_iter_nat.
set (n:=Zabs_nat [|p|]); clearbody n; clear p.
revert x y; induction n.
simpl; auto.
intros.
simpl addmuldiv31_alt.
replace (S n) with (n+1)%nat by (rewrite plus_comm; auto).
rewrite iter_nat_plus; simpl; auto.
Qed.
Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 31 ->
[| addmuldiv31 p x y |] =
([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 31) - [|p|]))) mod wB.
Proof.
intros.
rewrite addmuldiv31_equiv.
assert ([|p|] = Z_of_nat (Zabs_nat [|p|])).
rewrite inj_Zabs_nat; symmetry; apply Zabs_eq.
destruct (phi_bounded p); auto.
rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs_nat_Z_of_nat.
set (n := Zabs_nat [|p|]) in *; clearbody n.
assert (n <= 31)%nat.
rewrite inj_le_iff; auto with zarith.
clear p H; revert x y.
induction n.
simpl; intros.
change (Zpower_pos 2 31) with (2^31).
rewrite Zmult_1_r.
replace ([|y|] / 2^31) with 0.
rewrite Zplus_0_r.
symmetry; apply Zmod_small; apply phi_bounded.
symmetry; apply Zdiv_small; apply phi_bounded.
simpl addmuldiv31_alt; intros.
rewrite IHn; [ | omega ].
case_eq (firstl y); intros.
rewrite phi_twice, Zdouble_mult.
rewrite phi_twice_firstl; auto.
change (Zdouble [|y|]) with (2*[|y|]).
rewrite inj_S, Zpower_Zsucc; auto with zarith.
rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
f_equal.
apply Zplus_eq_compat.
ring.
replace (31-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring.
rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith.
rewrite Zmult_comm, Z_div_mult; auto with zarith.
rewrite phi_twice_plus_one, Zdouble_plus_one_mult.
rewrite phi_twice; auto.
change (Zdouble [|y|]) with (2*[|y|]).
rewrite inj_S, Zpower_Zsucc; auto with zarith.
rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
rewrite Zmult_plus_distr_l, Zmult_1_l, <- Zplus_assoc.
f_equal.
apply Zplus_eq_compat.
ring.
assert ((2*[|y|]) mod wB = 2*[|y|] - wB).
clear - H. symmetry. apply Zmod_unique with 1; [ | ring ].
generalize (phi_lowerbound _ H) (phi_bounded y).
set (wB' := 2^Z_of_nat (pred size)).
replace wB with (2*wB'); [ omega | ].
unfold wB'. rewrite <- Zpower_Zsucc, <- inj_S by (auto with zarith).
f_equal.
rewrite H1.
replace wB with (2^(Z_of_nat n)*2^(31-Z_of_nat n)) by
(rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring).
unfold Zminus; rewrite Zopp_mult_distr_l.
rewrite Z_div_plus; auto with zarith.
ring_simplify.
replace (31+-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring.
rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith.
rewrite Zmult_comm, Z_div_mult; auto with zarith.
Qed.
Let w_pos_mod := int31_op.(znz_pos_mod).
Lemma spec_pos_mod : forall w p,
[|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
Proof.
unfold w_pos_mod, znz_pos_mod, int31_op, compare31.
change [|31|] with 31%Z.
assert (forall w p, 31<=p -> [|w|] = [|w|] mod 2^p).
intros.
generalize (phi_bounded w).
symmetry; apply Zmod_small.
split; auto with zarith.
apply Zlt_le_trans with wB; auto with zarith.
apply Zpower_le_monotone; auto with zarith.
intros.
case_eq ([|p|] ?= 31); intros;
[ apply H; rewrite (Zcompare_Eq_eq _ _ H0); auto with zarith | |
apply H; change ([|p|]>31)%Z in H0; auto with zarith ].
change ([|p|]<31) in H0.
rewrite spec_add_mul_div by auto with zarith.
change [|0|] with 0%Z; rewrite Zmult_0_l, Zplus_0_l.
generalize (phi_bounded p)(phi_bounded w); intros.
assert (31-[|p|]<wB).
apply Zle_lt_trans with 31%Z; auto with zarith.
compute; auto.
assert ([|31-p|]=31-[|p|]).
unfold sub31; rewrite phi_phi_inv.
change [|31|] with 31%Z.
apply Zmod_small; auto with zarith.
rewrite spec_add_mul_div by (rewrite H4; auto with zarith).
change [|0|] with 0%Z; rewrite Zdiv_0_l, Zplus_0_r.
rewrite H4.
apply shift_unshift_mod_2; auto with zarith.
Qed.
(** Shift operations *)
Lemma spec_head00: forall x, [|x|] = 0 -> [|head031 x|] = Zpos 31.
Proof.
intros.
generalize (phi_inv_phi x).
rewrite H; simpl.
intros H'; rewrite <- H'.
simpl; auto.
Qed.
Fixpoint head031_alt n x :=
match n with
| O => 0%nat
| S n => match firstl x with
| D0 => S (head031_alt n (shiftl x))
| D1 => 0%nat
end
end.
Lemma head031_equiv :
forall x, [|head031 x|] = Z_of_nat (head031_alt size x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H).
simpl; auto.
unfold head031, recl.
change On with (phi_inv (Z_of_nat (31-size))).
replace (head031_alt size x) with
(head031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
assert (size <= 31)%nat by auto with arith.
revert x H; induction size; intros.
simpl; auto.
unfold recl_aux; fold recl_aux.
unfold head031_alt; fold head031_alt.
rewrite H.
assert ([|phi_inv (Z_of_nat (31-S n))|] = Z_of_nat (31 - S n)).
rewrite phi_phi_inv.
apply Zmod_small.
split.
change 0 with (Z_of_nat O); apply inj_le; omega.
apply Zle_lt_trans with (Z_of_nat 31).
apply inj_le; omega.
compute; auto.
case_eq (firstl x); intros; auto.
rewrite plus_Sn_m, plus_n_Sm.
replace (S (31 - S n)) with (31 - n)%nat by omega.
rewrite <- IHn; [ | omega | ].
f_equal; f_equal.
unfold add31.
rewrite H1.
f_equal.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite inj_S; ring.
clear - H H2.
rewrite (sneakr_shiftl x) in H.
rewrite H2 in H.
case_eq (iszero (shiftl x)); intros; auto.
rewrite (iszero_eq0 _ H0) in H; discriminate.
Qed.
Lemma phi_nz : forall x, 0 < [|x|] <-> x <> 0%int31.
Proof.
split; intros.
red; intro; subst x; discriminate.
assert ([|x|]<>0%Z).
contradict H.
rewrite <- (phi_inv_phi x); rewrite H; auto.
generalize (phi_bounded x); auto with zarith.
Qed.
Lemma spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ ([|head031 x|]) * [|x|] < wB.
Proof.
intros.
rewrite head031_equiv.
assert (nshiftl size x = 0%int31).
apply nshiftl_size.
revert x H H0.
unfold size at 2 5.
induction size.
simpl Z_of_nat.
intros.
compute in H0; rewrite H0 in H; discriminate.
intros.
simpl head031_alt.
case_eq (firstl x); intros.
rewrite (inj_S (head031_alt n (shiftl x))), Zpower_Zsucc; auto with zarith.
rewrite <- Zmult_assoc, Zmult_comm, <- Zmult_assoc, <-(Zmult_comm 2).
rewrite <- Zdouble_mult, <- (phi_twice_firstl _ H1).
apply IHn.
rewrite phi_nz; rewrite phi_nz in H; contradict H.
change twice with shiftl in H.
rewrite (sneakr_shiftl x), H1, H; auto.
rewrite <- nshiftl_S_tail; auto.
change (2^(Z_of_nat 0)) with 1; rewrite Zmult_1_l.
generalize (phi_bounded x); unfold size; split; auto with zarith.
change (2^(Z_of_nat 31)/2) with (2^(Z_of_nat (pred size))).
apply phi_lowerbound; auto.
Qed.
Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail031 x|] = Zpos 31.
Proof.
intros.
generalize (phi_inv_phi x).
rewrite H; simpl.
intros H'; rewrite <- H'.
simpl; auto.
Qed.
Fixpoint tail031_alt n x :=
match n with
| O => 0%nat
| S n => match firstr x with
| D0 => S (tail031_alt n (shiftr x))
| D1 => 0%nat
end
end.
Lemma tail031_equiv :
forall x, [|tail031 x|] = Z_of_nat (tail031_alt size x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H).
simpl; auto.
unfold tail031, recr.
change On with (phi_inv (Z_of_nat (31-size))).
replace (tail031_alt size x) with
(tail031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
assert (size <= 31)%nat by auto with arith.
revert x H; induction size; intros.
simpl; auto.
unfold recr_aux; fold recr_aux.
unfold tail031_alt; fold tail031_alt.
rewrite H.
assert ([|phi_inv (Z_of_nat (31-S n))|] = Z_of_nat (31 - S n)).
rewrite phi_phi_inv.
apply Zmod_small.
split.
change 0 with (Z_of_nat O); apply inj_le; omega.
apply Zle_lt_trans with (Z_of_nat 31).
apply inj_le; omega.
compute; auto.
case_eq (firstr x); intros; auto.
rewrite plus_Sn_m, plus_n_Sm.
replace (S (31 - S n)) with (31 - n)%nat by omega.
rewrite <- IHn; [ | omega | ].
f_equal; f_equal.
unfold add31.
rewrite H1.
f_equal.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite inj_S; ring.
clear - H H2.
rewrite (sneakl_shiftr x) in H.
rewrite H2 in H.
case_eq (iszero (shiftr x)); intros; auto.
rewrite (iszero_eq0 _ H0) in H; discriminate.
Qed.
Lemma spec_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail031 x|]).
Proof.
intros.
rewrite tail031_equiv.
assert (nshiftr size x = 0%int31).
apply nshiftr_size.
revert x H H0.
induction size.
simpl Z_of_nat.
intros.
compute in H0; rewrite H0 in H; discriminate.
intros.
simpl tail031_alt.
case_eq (firstr x); intros.
rewrite (inj_S (tail031_alt n (shiftr x))), Zpower_Zsucc; auto with zarith.
destruct (IHn (shiftr x)) as (y & Hy1 & Hy2).
rewrite phi_nz; rewrite phi_nz in H; contradict H.
rewrite (sneakl_shiftr x), H1, H; auto.
rewrite <- nshiftr_S_tail; auto.
exists y; split; auto.
rewrite phi_eqn1; auto.
rewrite Zdouble_mult, Hy2; ring.
exists [|shiftr x|].
split.
generalize (phi_bounded (shiftr x)); auto with zarith.
rewrite phi_eqn2; auto.
rewrite Zdouble_plus_one_mult; simpl; ring.
Qed.
(* Sqrt *)
(* Direct transcription of an old proof
of a fortran program in boyer-moore *)
Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
Proof.
case (Z_mod_lt a 2); auto with zarith.
intros H1; rewrite Zmod_eq_full; auto with zarith.
Qed.
Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
(j * k) + j <= ((j + k)/2 + 1) ^ 2.
Proof.
intros Hj; generalize Hj k; pattern j; apply natlike_ind;
auto; clear k j Hj.
intros _ k Hk; repeat rewrite Zplus_0_l.
apply Zmult_le_0_compat; generalize (Z_div_pos k 2); auto with zarith.
intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
rewrite Zmult_0_r, Zplus_0_r, Zplus_0_l.
generalize (sqr_pos (Zsucc j / 2)) (quotient_by_2 (Zsucc j));
unfold Zsucc.
rewrite Zpower_2, Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
auto with zarith.
intros k Hk _.
replace ((Zsucc j + Zsucc k) / 2) with ((j + k)/2 + 1).
generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
unfold Zsucc; repeat rewrite Zpower_2;
repeat rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
repeat rewrite Zmult_1_l; repeat rewrite Zmult_1_r.
auto with zarith.
rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith.
apply f_equal2 with (f := Zdiv); auto with zarith.
Qed.
Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
Proof.
intros Hi Hj.
assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
apply Zlt_le_trans with (2 := sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij).
pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith.
Qed.
Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
Proof.
intros Hi.
assert (H1: 0 <= i - 2) by auto with zarith.
assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
replace i with (1* 2 + (i - 2)); auto with zarith.
rewrite Zpower_2, Z_div_plus_full_l; auto with zarith.
generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2).
rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
auto with zarith.
generalize (quotient_by_2 i).
rewrite Zpower_2 in H2 |- *;
repeat (rewrite Zmult_plus_distr_l ||
rewrite Zmult_plus_distr_r ||
rewrite Zmult_1_l || rewrite Zmult_1_r).
auto with zarith.
Qed.
Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
Proof.
intros Hi Hj Hd; rewrite Zpower_2.
apply Zle_trans with (j * (i/j)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
Proof.
intros Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto.
intros H1; contradict H; apply Zle_not_lt.
assert (2 * j <= j + (i/j)); auto with zarith.
apply Zle_trans with (2 * ((j + (i/j))/2)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
(* George's trick *)
Inductive ZcompareSpec (i j: Z): comparison -> Prop :=
ZcompareSpecEq: i = j -> ZcompareSpec i j Eq
| ZcompareSpecLt: i < j -> ZcompareSpec i j Lt
| ZcompareSpecGt: j < i -> ZcompareSpec i j Gt.
Lemma Zcompare_spec i j: ZcompareSpec i j (i ?= j).
Proof.
case_eq (Zcompare i j); intros H.
apply ZcompareSpecEq; apply Zcompare_Eq_eq; auto.
apply ZcompareSpecLt; auto.
apply ZcompareSpecGt; apply Zgt_lt; auto.
Qed.
Lemma sqrt31_step_def rec i j:
sqrt31_step rec i j =
match (fst (i/j) ?= j)%int31 with
Lt => rec i (fst ((j + fst(i/j))/2))%int31
| _ => j
end.
Proof.
unfold sqrt31_step; case div31; intros.
simpl; case compare31; auto.
Qed.
Lemma div31_phi i j: 0 < [|j|] -> [|fst (i/j)%int31|] = [|i|]/[|j|].
intros Hj; generalize (spec_div i j Hj).
case div31; intros q r; simpl fst.
intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith.
rewrite H1; ring.
Qed.
Lemma sqrt31_step_correct rec i j:
0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
2 * [|j|] < wB ->
(forall j1 : int31,
0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 ->
[|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
[|sqrt31_step rec i j|] ^ 2 <= [|i|] < ([|sqrt31_step rec i j|] + 1) ^ 2.
Proof.
assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt).
intros Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
generalize (spec_compare (fst (i/j)%int31) j); case compare31;
rewrite div31_phi; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec; repeat rewrite div31_phi; auto with zarith.
replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]).
split.
case (Zle_lt_or_eq 1 [|j|]); auto with zarith; intros Hj1.
replace ([|j|] + [|i|]/[|j|]) with
(1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith).
assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith.
rewrite <- Hj1, Zdiv_1_r.
replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith).
change ([|2|]) with 2%Z; auto with zarith.
apply sqrt_test_false; auto with zarith.
rewrite spec_add, div31_phi; auto.
apply sym_equal; apply Zmod_small.
split; auto with zarith.
replace [|j + fst (i / j)%int31|] with ([|j|] + [|i|] / [|j|]).
apply sqrt_main; auto with zarith.
rewrite spec_add, div31_phi; auto.
apply sym_equal; apply Zmod_small.
split; auto with zarith.
Qed.
Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] ->
[|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z_of_nat size) ->
(forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
[|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z_of_nat size) ->
[|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
[|iter31_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter31_sqrt n rec i j|] + 1) ^ 2.
Proof.
revert rec i j; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n.
intros rec i j Hi Hj Hij H31 Hrec; apply sqrt31_step_correct; auto with zarith.
intros; apply Hrec; auto with zarith.
rewrite Zpower_0_r; auto with zarith.
intros n Hrec rec i j Hi Hj Hij H31 HHrec.
apply sqrt31_step_correct; auto.
intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith.
intros j3 Hj3 Hpj3.
apply HHrec; auto.
rewrite inj_S, Zpower_Zsucc.
apply Zle_trans with (2 ^Z_of_nat n + [|j2|]); auto with zarith.
apply Zle_0_nat.
Qed.
Lemma spec_sqrt : forall x,
[|sqrt31 x|] ^ 2 <= [|x|] < ([|sqrt31 x|] + 1) ^ 2.
Proof.
intros i; unfold sqrt31.
generalize (spec_compare 1 i); case compare31; change [|1|] with 1;
intros Hi; auto with zarith.
repeat rewrite Zpower_2; auto with zarith.
apply iter31_sqrt_correct; auto with zarith.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring.
assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith).
rewrite Z_div_plus_full_l; auto with zarith.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply sqrt_init; auto.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply Zle_lt_trans with ([|i|]).
apply Z_mult_div_ge; auto with zarith.
case (phi_bounded i); auto.
intros j2 H1 H2; contradict H2; apply Zlt_not_le.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply Zle_lt_trans with ([|i|]); auto with zarith.
assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith).
apply Zle_trans with (2 * ([|i|]/2)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
case (phi_bounded i); unfold size; auto with zarith.
change [|0|] with 0; auto with zarith.
case (phi_bounded i); repeat rewrite Zpower_2; auto with zarith.
Qed.
Lemma sqrt312_step_def rec ih il j:
sqrt312_step rec ih il j =
match (ih ?= j)%int31 with
Eq => j
| Gt => j
| _ =>
match (fst (div3121 ih il j) ?= j)%int31 with
Lt => let m := match j +c fst (div3121 ih il j) with
C0 m1 => fst (m1/2)%int31
| C1 m1 => (fst (m1/2) + v30)%int31
end in rec ih il m
| _ => j
end
end.
Proof.
unfold sqrt312_step; case div3121; intros.
simpl; case compare31; auto.
Qed.
Lemma sqrt312_lower_bound ih il j:
phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|].
Proof.
intros H1.
case (phi_bounded j); intros Hbj _.
case (phi_bounded il); intros Hbil _.
case (phi_bounded ih); intros Hbih Hbih1.
assert (([|ih|] < [|j|] + 1)%Z); auto with zarith.
apply Zlt_square_simpl; auto with zarith.
repeat rewrite <-Zpower_2; apply Zle_lt_trans with (2 := H1).
apply Zle_trans with ([|ih|] * base)%Z; unfold phi2, base;
try rewrite Zpower_2; auto with zarith.
Qed.
Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] ->
[|fst (div3121 ih il j)|] = phi2 ih il/[|j|])%Z.
Proof.
intros Hj Hj1.
generalize (spec_div21 ih il j Hj Hj1).
case div3121; intros q r (Hq, Hr).
apply Zdiv_unique with (phi r); auto with zarith.
simpl fst; apply trans_equal with (1 := Hq); ring.
Qed.
Lemma sqrt312_step_correct rec ih il j:
2 ^ 29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
(forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 ->
[|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
[|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il
< ([|sqrt312_step rec ih il j|] + 1) ^ 2.
Proof.
assert (Hp2: (0 < [|2|])%Z) by exact (refl_equal Lt).
intros Hih Hj Hij Hrec; rewrite sqrt312_step_def.
assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt312_lower_bound with il; auto).
case (phi_bounded ih); intros Hih1 _.
case (phi_bounded il); intros Hil1 _.
case (phi_bounded j); intros _ Hj1.
assert (Hp3: (0 < phi2 ih il)).
unfold phi2; apply Zlt_le_trans with ([|ih|] * base)%Z; auto with zarith.
apply Zmult_lt_0_compat; auto with zarith.
apply Zlt_le_trans with (2:= Hih); auto with zarith.
generalize (spec_compare ih j); case compare31; intros Hc1.
split; auto.
apply sqrt_test_true; auto.
unfold phi2, base; auto with zarith.
unfold phi2; rewrite Hc1.
assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith).
rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith.
unfold Zpower, Zpower_pos in Hj1; simpl in Hj1; auto with zarith.
case (Zle_or_lt (2 ^ 30) [|j|]); intros Hjj.
generalize (spec_compare (fst (div3121 ih il j)) j); case compare31;
rewrite div312_phi; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec.
assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith).
case (Zle_lt_or_eq 1 ([|j|])); auto with zarith; intros Hf2.
2: contradict Hc; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; auto with zarith.
assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2).
replace ([|j|] + phi2 ih il/ [|j|])%Z with
(1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith.
assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]).
apply sqrt_test_false; auto with zarith.
generalize (spec_add_c j (fst (div3121 ih il j))).
unfold interp_carry; case add31c; intros r;
rewrite div312_phi; auto with zarith.
rewrite div31_phi; change [|2|] with 2%Z; auto with zarith.
intros HH; rewrite HH; clear HH; auto with zarith.
rewrite spec_add, div31_phi; change [|2|] with 2%Z; auto.
rewrite Zmult_1_l; intros HH.
rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith.
change (phi v30 * 2) with (2 ^ Z_of_nat size).
rewrite HH, Zmod_small; auto with zarith.
replace (phi
match j +c fst (div3121 ih il j) with
| C0 m1 => fst (m1 / 2)%int31
| C1 m1 => fst (m1 / 2)%int31 + v30
end) with ((([|j|] + (phi2 ih il)/([|j|]))/2)).
apply sqrt_main; auto with zarith.
generalize (spec_add_c j (fst (div3121 ih il j))).
unfold interp_carry; case add31c; intros r;
rewrite div312_phi; auto with zarith.
rewrite div31_phi; auto with zarith.
intros HH; rewrite HH; auto with zarith.
intros HH; rewrite <- HH.
change (1 * 2 ^ Z_of_nat size) with (phi (v30) * 2).
rewrite Z_div_plus_full_l; auto with zarith.
rewrite Zplus_comm.
rewrite spec_add, Zmod_small.
rewrite div31_phi; auto.
split; auto with zarith.
case (phi_bounded (fst (r/2)%int31));
case (phi_bounded v30); auto with zarith.
rewrite div31_phi; change (phi 2) with 2%Z; auto.
change (2 ^Z_of_nat size) with (base/2 + phi v30).
assert (phi r / 2 < base/2); auto with zarith.
apply Zmult_gt_0_lt_reg_r with 2; auto with zarith.
change (base/2 * 2) with base.
apply Zle_lt_trans with (phi r).
rewrite Zmult_comm; apply Z_mult_div_ge; auto with zarith.
case (phi_bounded r); auto with zarith.
contradict Hij; apply Zle_not_lt.
assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith.
apply Zle_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith.
assert (0 <= 1 + [|j|]); auto with zarith.
apply Zmult_le_compat; auto with zarith.
change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base).
apply Zle_trans with ([|ih|] * base); auto with zarith.
unfold phi2, base; auto with zarith.
split; auto.
apply sqrt_test_true; auto.
unfold phi2, base; auto with zarith.
apply Zle_ge; apply Zle_trans with (([|j|] * base)/[|j|]).
rewrite Zmult_comm, Z_div_mult; auto with zarith.
apply Zge_le; apply Z_div_ge; auto with zarith.
Qed.
Lemma iter312_sqrt_correct n rec ih il j:
2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
(forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
phi2 ih il < ([|j1|] + 1) ^ 2 ->
[|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
[|iter312_sqrt n rec ih il j|] ^ 2 <= phi2 ih il
< ([|iter312_sqrt n rec ih il j|] + 1) ^ 2.
Proof.
revert rec ih il j; elim n; unfold iter312_sqrt; fold iter312_sqrt; clear n.
intros rec ih il j Hi Hj Hij Hrec; apply sqrt312_step_correct; auto with zarith.
intros; apply Hrec; auto with zarith.
rewrite Zpower_0_r; auto with zarith.
intros n Hrec rec ih il j Hi Hj Hij HHrec.
apply sqrt312_step_correct; auto.
intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith.
intros j3 Hj3 Hpj3.
apply HHrec; auto.
rewrite inj_S, Zpower_Zsucc.
apply Zle_trans with (2 ^Z_of_nat n + [|j2|])%Z; auto with zarith.
apply Zle_0_nat.
Qed.
Lemma spec_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
let (s,r) := sqrt312 x y in
[||WW x y||] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|].
Proof.
intros ih il Hih; unfold sqrt312.
change [||WW ih il||] with (phi2 ih il).
assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by
(intros s; ring).
assert (Hb: 0 <= base) by (red; intros HH; discriminate).
assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2).
change ((phi Tn + 1) ^ 2) with (2^62).
apply Zle_lt_trans with ((2^31 -1) * base + (2^31 - 1)); auto with zarith.
2: simpl; unfold Zpower_pos; simpl; auto with zarith.
case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4.
unfold base, Zpower, Zpower_pos in H2,H4; simpl in H2,H4.
unfold phi2,Zpower, Zpower_pos; simpl iter_pos; auto with zarith.
case (iter312_sqrt_correct 31 (fun _ _ j => j) ih il Tn); auto with zarith.
change [|Tn|] with 2147483647; auto with zarith.
intros j1 _ HH; contradict HH.
apply Zlt_not_le.
change [|Tn|] with 2147483647; auto with zarith.
change (2 ^ Z_of_nat 31) with 2147483648; auto with zarith.
case (phi_bounded j1); auto with zarith.
set (s := iter312_sqrt 31 (fun _ _ j : int31 => j) ih il Tn).
intros Hs1 Hs2.
generalize (spec_mul_c s s); case mul31c.
simpl zn2z_to_Z; intros HH.
assert ([|s|] = 0).
case (Zmult_integral _ _ (sym_equal HH)); auto.
contradict Hs2; apply Zle_not_lt; rewrite H.
change ((0 + 1) ^ 2) with 1.
apply Zle_trans with (2 ^ Z_of_nat size / 4 * base).
simpl; auto with zarith.
apply Zle_trans with ([|ih|] * base); auto with zarith.
unfold phi2; case (phi_bounded il); auto with zarith.
intros ih1 il1.
change [||WW ih1 il1||] with (phi2 ih1 il1).
intros Hihl1.
generalize (spec_sub_c il il1).
case sub31c; intros il2 Hil2.
simpl interp_carry in Hil2.
generalize (spec_compare ih ih1); case compare31.
unfold interp_carry.
intros H1; split.
rewrite Zpower_2, <- Hihl1.
unfold phi2; ring[Hil2 H1].
replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
rewrite Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
unfold phi2; rewrite H1, Hil2; ring.
unfold interp_carry.
intros H1; contradict Hs1.
apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
unfold phi2.
case (phi_bounded il); intros _ H2.
apply Zlt_le_trans with (([|ih|] + 1) * base + 0).
rewrite Zmult_plus_distr_l, Zplus_0_r; auto with zarith.
case (phi_bounded il1); intros H3 _.
apply Zplus_le_compat; auto with zarith.
unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base.
rewrite Zpower_2, <- Hihl1, Hil2.
intros H1.
case (Zle_lt_or_eq ([|ih1|] + 1) ([|ih|])); auto with zarith.
intros H2; contradict Hs2; apply Zle_not_lt.
replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
unfold phi2.
case (phi_bounded il); intros Hpil _.
assert (Hl1l: [|il1|] <= [|il|]).
case (phi_bounded il2); rewrite Hil2; auto with zarith.
assert ([|ih1|] * base + 2 * [|s|] + 1 <= [|ih|] * base); auto with zarith.
case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps.
case (phi_bounded ih1); intros Hpih1 _; auto with zarith.
apply Zle_trans with (([|ih1|] + 2) * base); auto with zarith.
rewrite Zmult_plus_distr_l.
assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
rewrite Hihl1, Hbin; auto.
intros H2; split.
unfold phi2; rewrite <- H2; ring.
replace (base + ([|il|] - [|il1|])) with (phi2 ih il - ([|s|] * [|s|])).
rewrite <-Hbin in Hs2; auto with zarith.
rewrite <- Hihl1; unfold phi2; rewrite <- H2; ring.
unfold interp_carry in Hil2 |- *.
unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base.
assert (Hsih: [|ih - 1|] = [|ih|] - 1).
rewrite spec_sub, Zmod_small; auto; change [|1|] with 1.
case (phi_bounded ih); intros H1 H2.
generalize Hih; change (2 ^ Z_of_nat size / 4) with 536870912.
split; auto with zarith.
generalize (spec_compare (ih - 1) ih1); case compare31.
rewrite Hsih.
intros H1; split.
rewrite Zpower_2, <- Hihl1.
unfold phi2; rewrite <-H1.
apply trans_equal with ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])).
ring.
rewrite <-Hil2.
change (2 ^ Z_of_nat size) with base; ring.
replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
rewrite Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
unfold phi2.
rewrite <-H1.
ring_simplify.
apply trans_equal with (base + ([|il|] - [|il1|])).
ring.
rewrite <-Hil2.
change (2 ^ Z_of_nat size) with base; ring.
rewrite Hsih; intros H1.
assert (He: [|ih|] = [|ih1|]).
apply Zle_antisym; auto with zarith.
case (Zle_or_lt [|ih1|] [|ih|]); auto; intros H2.
contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
unfold phi2.
case (phi_bounded il); change (2 ^ Z_of_nat size) with base;
intros _ Hpil1.
apply Zlt_le_trans with (([|ih|] + 1) * base).
rewrite Zmult_plus_distr_l, Zmult_1_l; auto with zarith.
case (phi_bounded il1); intros Hpil2 _.
apply Zle_trans with (([|ih1|]) * base); auto with zarith.
rewrite Zpower_2, <-Hihl1; unfold phi2; rewrite <-He.
contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
unfold phi2; rewrite He.
assert (phi il - phi il1 < 0); auto with zarith.
rewrite <-Hil2.
case (phi_bounded il2); auto with zarith.
intros H1.
rewrite Zpower_2, <-Hihl1.
case (Zle_lt_or_eq ([|ih1|] + 2) [|ih|]); auto with zarith.
intros H2; contradict Hs2; apply Zle_not_lt.
replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
unfold phi2.
assert ([|ih1|] * base + 2 * phi s + 1 <= [|ih|] * base + ([|il|] - [|il1|]));
auto with zarith.
rewrite <-Hil2.
change (-1 * 2 ^ Z_of_nat size) with (-base).
case (phi_bounded il2); intros Hpil2 _.
apply Zle_trans with ([|ih|] * base + - base); auto with zarith.
case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps.
assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
apply Zle_trans with ([|ih1|] * base + 2 * base); auto with zarith.
assert (Hi: ([|ih1|] + 3) * base <= [|ih|] * base); auto with zarith.
rewrite Zmult_plus_distr_l in Hi; auto with zarith.
rewrite Hihl1, Hbin; auto.
intros H2; unfold phi2; rewrite <-H2.
split.
replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
rewrite <-Hil2.
change (-1 * 2 ^ Z_of_nat size) with (-base); ring.
replace (base + [|il2|]) with (phi2 ih il - phi2 ih1 il1).
rewrite Hihl1.
rewrite <-Hbin in Hs2; auto with zarith.
unfold phi2; rewrite <-H2.
replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
rewrite <-Hil2.
change (-1 * 2 ^ Z_of_nat size) with (-base); ring.
Qed.
(** [iszero] *)
Let w_eq0 := int31_op.(znz_eq0).
Lemma spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
Proof.
clear; unfold w_eq0, znz_eq0; simpl.
unfold compare31; simpl; intros.
change [|0|] with 0 in H.
apply Zcompare_Eq_eq.
now destruct ([|x|] ?= 0).
Qed.
(* Even *)
Let w_is_even := int31_op.(znz_is_even).
Lemma spec_is_even : forall x,
if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
Proof.
unfold w_is_even; simpl; intros.
generalize (spec_div x 2).
destruct (x/2)%int31 as (q,r); intros.
unfold compare31.
change [|2|] with 2 in H.
change [|0|] with 0.
destruct H; auto with zarith.
replace ([|x|] mod 2) with [|r|].
destruct H; auto with zarith.
case_eq ([|r|] ?= 0)%Z; intros.
apply Zcompare_Eq_eq; auto.
change ([|r|] < 0)%Z in H; auto with zarith.
change ([|r|] > 0)%Z in H; auto with zarith.
apply Zmod_unique with [|q|]; auto with zarith.
Qed.
Definition int31_spec : znz_spec int31_op.
split.
exact phi_bounded.
exact positive_to_int31_spec.
exact spec_zdigits.
exact spec_more_than_1_digit.
exact spec_0.
exact spec_1.
exact spec_Bm1.
exact spec_compare.
exact spec_eq0.
exact spec_opp_c.
exact spec_opp.
exact spec_opp_carry.
exact spec_succ_c.
exact spec_add_c.
exact spec_add_carry_c.
exact spec_succ.
exact spec_add.
exact spec_add_carry.
exact spec_pred_c.
exact spec_sub_c.
exact spec_sub_carry_c.
exact spec_pred.
exact spec_sub.
exact spec_sub_carry.
exact spec_mul_c.
exact spec_mul.
exact spec_square_c.
exact spec_div21.
intros; apply spec_div; auto.
exact spec_div.
intros; unfold int31_op; simpl; apply spec_mod; auto.
exact spec_mod.
intros; apply spec_gcd; auto.
exact spec_gcd.
exact spec_head00.
exact spec_head0.
exact spec_tail00.
exact spec_tail0.
exact spec_add_mul_div.
exact spec_pos_mod.
exact spec_is_even.
exact spec_sqrt2.
exact spec_sqrt.
Qed.
End Int31_Spec.
Module Int31Cyclic <: CyclicType.
Definition w := int31.
Definition w_op := int31_op.
Definition w_spec := int31_spec.
End Int31Cyclic.
|