1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
Set Implicit Arguments.
Require Import ZArith.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.
Local Open Scope Z_scope.
Section DoubleSqrt.
Variable w : Type.
Variable w_is_even : w -> bool.
Variable w_compare : w -> w -> comparison.
Variable w_0 : w.
Variable w_1 : w.
Variable w_Bm1 : w.
Variable w_WW : w -> w -> zn2z w.
Variable w_W0 : w -> zn2z w.
Variable w_0W : w -> zn2z w.
Variable w_sub : w -> w -> w.
Variable w_sub_c : w -> w -> carry w.
Variable w_square_c : w -> zn2z w.
Variable w_div21 : w -> w -> w -> w * w.
Variable w_add_mul_div : w -> w -> w -> w.
Variable w_digits : positive.
Variable w_zdigits : w.
Variable ww_zdigits : zn2z w.
Variable w_add_c : w -> w -> carry w.
Variable w_sqrt2 : w -> w -> w * carry w.
Variable w_pred : w -> w.
Variable ww_pred_c : zn2z w -> carry (zn2z w).
Variable ww_pred : zn2z w -> zn2z w.
Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w).
Variable ww_add : zn2z w -> zn2z w -> zn2z w.
Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w).
Variable ww_add_mul_div : zn2z w -> zn2z w -> zn2z w -> zn2z w.
Variable ww_head0 : zn2z w -> zn2z w.
Variable ww_compare : zn2z w -> zn2z w -> comparison.
Variable low : zn2z w -> w.
Let wwBm1 := ww_Bm1 w_Bm1.
Definition ww_is_even x :=
match x with
| W0 => true
| WW xh xl => w_is_even xl
end.
Let w_div21c x y z :=
match w_compare x z with
| Eq =>
match w_compare y z with
Eq => (C1 w_1, w_0)
| Gt => (C1 w_1, w_sub y z)
| Lt => (C1 w_0, y)
end
| Gt =>
let x1 := w_sub x z in
let (q, r) := w_div21 x1 y z in
(C1 q, r)
| Lt =>
let (q, r) := w_div21 x y z in
(C0 q, r)
end.
Let w_div2s x y s :=
match x with
C1 x1 =>
let x2 := w_sub x1 s in
let (q, r) := w_div21c x2 y s in
match q with
C0 q1 =>
if w_is_even q1 then
(C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r)
else
(C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s)
| C1 q1 =>
if w_is_even q1 then
(C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r)
else
(C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s)
end
| C0 x1 =>
let (q, r) := w_div21c x1 y s in
match q with
C0 q1 =>
if w_is_even q1 then
(C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r)
else
(C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s)
| C1 q1 =>
if w_is_even q1 then
(C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r)
else
(C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s)
end
end.
Definition split x :=
match x with
| W0 => (w_0,w_0)
| WW h l => (h,l)
end.
Definition ww_sqrt2 x y :=
let (x1, x2) := split x in
let (y1, y2) := split y in
let ( q, r) := w_sqrt2 x1 x2 in
let (q1, r1) := w_div2s r y1 q in
match q1 with
C0 q1 =>
let q2 := w_square_c q1 in
let a := WW q q1 in
match r1 with
C1 r2 =>
match ww_sub_c (WW r2 y2) q2 with
C0 r3 => (a, C1 r3)
| C1 r3 => (a, C0 r3)
end
| C0 r2 =>
match ww_sub_c (WW r2 y2) q2 with
C0 r3 => (a, C0 r3)
| C1 r3 =>
let a2 := ww_add_mul_div (w_0W w_1) a W0 in
match ww_pred_c a2 with
C0 a3 =>
(ww_pred a, ww_add_c a3 r3)
| C1 a3 =>
(ww_pred a, C0 (ww_add a3 r3))
end
end
end
| C1 q1 =>
let a1 := WW q w_Bm1 in
let a2 := ww_add_mul_div (w_0W w_1) a1 wwBm1 in
(a1, ww_add_c a2 y)
end.
Definition ww_is_zero x :=
match ww_compare W0 x with
Eq => true
| _ => false
end.
Definition ww_head1 x :=
let p := ww_head0 x in
if (ww_is_even p) then p else ww_pred p.
Definition ww_sqrt x :=
if (ww_is_zero x) then W0
else
let p := ww_head1 x in
match ww_compare p W0 with
| Gt =>
match ww_add_mul_div p x W0 with
W0 => W0
| WW x1 x2 =>
let (r, _) := w_sqrt2 x1 x2 in
WW w_0 (w_add_mul_div
(w_sub w_zdigits
(low (ww_add_mul_div (ww_pred ww_zdigits)
W0 p))) w_0 r)
end
| _ =>
match x with
W0 => W0
| WW x1 x2 => WW w_0 (fst (w_sqrt2 x1 x2))
end
end.
Variable w_to_Z : w -> Z.
Notation wB := (base w_digits).
Notation wwB := (base (ww_digits w_digits)).
Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
Notation "[+| c |]" :=
(interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
Notation "[+[ c ]]" :=
(interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
(at level 0, x at level 99).
Notation "[-[ c ]]" :=
(interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
(at level 0, x at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99).
Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
(at level 0, x at level 99).
Variable spec_w_0 : [|w_0|] = 0.
Variable spec_w_1 : [|w_1|] = 1.
Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
Variable spec_w_zdigits : [|w_zdigits|] = Zpos w_digits.
Variable spec_more_than_1_digit: 1 < Zpos w_digits.
Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos (xO w_digits).
Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
Variable spec_w_is_even : forall x,
if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
Variable spec_w_compare : forall x y,
w_compare x y = Z.compare [|x|] [|y|].
Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|].
Variable spec_w_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := w_div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Variable spec_w_add_mul_div : forall x y p,
[|p|] <= Zpos w_digits ->
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (Z.pow 2 ((Zpos w_digits) - [|p|]))) mod wB.
Variable spec_ww_add_mul_div : forall x y p,
[[p]] <= Zpos (xO w_digits) ->
[[ ww_add_mul_div p x y ]] =
([[x]] * (2^ [[p]]) +
[[y]] / (2^ (Zpos (xO w_digits) - [[p]]))) mod wwB.
Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
Variable spec_w_sqrt2 : forall x y,
wB/ 4 <= [|x|] ->
let (s,r) := w_sqrt2 x y in
[[WW x y]] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|].
Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
Variable spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1.
Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB.
Variable spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB.
Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
Variable spec_ww_compare : forall x y,
ww_compare x y = Z.compare [[x]] [[y]].
Variable spec_ww_head0 : forall x, 0 < [[x]] ->
wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
Variable spec_low: forall x, [|low x|] = [[x]] mod wB.
Let spec_ww_Bm1 : [[wwBm1]] = wwB - 1.
Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed.
Hint Rewrite spec_w_0 spec_w_1 spec_w_WW spec_w_sub
spec_w_add_mul_div spec_ww_Bm1 spec_w_add_c : w_rewrite.
Lemma spec_ww_is_even : forall x,
if ww_is_even x then [[x]] mod 2 = 0 else [[x]] mod 2 = 1.
clear spec_more_than_1_digit.
intros x; case x; simpl ww_is_even.
simpl.
rewrite Zmod_small; auto with zarith.
intros w1 w2; simpl.
unfold base.
rewrite Zplus_mod; auto with zarith.
rewrite (fun x y => (Zdivide_mod (x * y))); auto with zarith.
rewrite Z.add_0_l; rewrite Zmod_mod; auto with zarith.
apply spec_w_is_even; auto with zarith.
apply Z.divide_mul_r; apply Zpower_divide; auto with zarith.
Qed.
Theorem spec_w_div21c : forall a1 a2 b,
wB/2 <= [|b|] ->
let (q,r) := w_div21c a1 a2 b in
[|a1|] * wB + [|a2|] = [+|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
intros a1 a2 b Hb; unfold w_div21c.
assert (H: 0 < [|b|]); auto with zarith.
assert (U := wB_pos w_digits).
apply Z.lt_le_trans with (2 := Hb); auto with zarith.
apply Z.lt_le_trans with 1; auto with zarith.
apply Zdiv_le_lower_bound; auto with zarith.
rewrite !spec_w_compare. repeat case Z.compare_spec.
intros H1 H2; split.
unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
rewrite H1; rewrite H2; ring.
autorewrite with w_rewrite; auto with zarith.
intros H1 H2; split.
unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
rewrite H2; ring.
destruct (spec_to_Z a2);auto with zarith.
intros H1 H2; split.
unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
rewrite H2; rewrite Zmod_small; auto with zarith.
ring.
destruct (spec_to_Z a2);auto with zarith.
rewrite spec_w_sub; auto with zarith.
destruct (spec_to_Z a2) as [H3 H4];auto with zarith.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
assert ([|a2|] < 2 * [|b|]); auto with zarith.
apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith.
rewrite wB_div_2; auto.
intros H1.
match goal with |- context[w_div21 ?y ?z ?t] =>
generalize (@spec_w_div21 y z t Hb H1);
case (w_div21 y z t); simpl; autorewrite with w_rewrite;
auto
end.
intros H1.
assert (H2: [|w_sub a1 b|] < [|b|]).
rewrite spec_w_sub; auto with zarith.
rewrite Zmod_small; auto with zarith.
assert ([|a1|] < 2 * [|b|]); auto with zarith.
apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith.
rewrite wB_div_2; auto.
destruct (spec_to_Z a1);auto with zarith.
destruct (spec_to_Z a1);auto with zarith.
match goal with |- context[w_div21 ?y ?z ?t] =>
generalize (@spec_w_div21 y z t Hb H2);
case (w_div21 y z t); autorewrite with w_rewrite;
auto
end.
intros w0 w1; replace [+|C1 w0|] with (wB + [|w0|]).
rewrite Zmod_small; auto with zarith.
intros (H3, H4); split; auto.
rewrite Z.mul_add_distr_r.
rewrite <- Z.add_assoc; rewrite <- H3; ring.
split; auto with zarith.
assert ([|a1|] < 2 * [|b|]); auto with zarith.
apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith.
rewrite wB_div_2; auto.
destruct (spec_to_Z a1);auto with zarith.
destruct (spec_to_Z a1);auto with zarith.
simpl; case wB; auto.
Qed.
Theorem C0_id: forall p, [+|C0 p|] = [|p|].
intros p; simpl; auto.
Qed.
Theorem add_mult_div_2: forall w,
[|w_add_mul_div (w_pred w_zdigits) w_0 w|] = [|w|] / 2.
intros w1.
assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1).
rewrite spec_pred; rewrite spec_w_zdigits.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
apply Z.lt_le_trans with (Zpos w_digits); auto with zarith.
unfold base; apply Zpower2_le_lin; auto with zarith.
rewrite spec_w_add_mul_div; auto with zarith.
autorewrite with w_rewrite rm10.
match goal with |- context[?X - ?Y] =>
replace (X - Y) with 1
end.
rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith.
destruct (spec_to_Z w1) as [H1 H2];auto with zarith.
split; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
rewrite Hp; ring.
Qed.
Theorem add_mult_div_2_plus_1: forall w,
[|w_add_mul_div (w_pred w_zdigits) w_1 w|] =
[|w|] / 2 + 2 ^ Zpos (w_digits - 1).
intros w1.
assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1).
rewrite spec_pred; rewrite spec_w_zdigits.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
apply Z.lt_le_trans with (Zpos w_digits); auto with zarith.
unfold base; apply Zpower2_le_lin; auto with zarith.
autorewrite with w_rewrite rm10; auto with zarith.
match goal with |- context[?X - ?Y] =>
replace (X - Y) with 1
end; rewrite Hp; try ring.
rewrite Pos2Z.inj_sub_max; auto with zarith.
rewrite Z.max_r; auto with zarith.
rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith.
destruct (spec_to_Z w1) as [H1 H2];auto with zarith.
split; auto with zarith.
unfold base.
match goal with |- _ < _ ^ ?X =>
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite <- (tmp X); clear tmp
end.
rewrite Zpower_exp; try rewrite Z.pow_1_r; auto with zarith.
assert (tmp: forall p, 1 + (p -1) - 1 = p - 1); auto with zarith;
rewrite tmp; clear tmp; auto with zarith.
match goal with |- ?X + ?Y < _ =>
assert (Y < X); auto with zarith
end.
apply Zdiv_lt_upper_bound; auto with zarith.
pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp;
auto with zarith.
assert (tmp: forall p, (p - 1) + 1 = p); auto with zarith;
rewrite tmp; clear tmp; auto with zarith.
Qed.
Theorem add_mult_mult_2: forall w,
[|w_add_mul_div w_1 w w_0|] = 2 * [|w|] mod wB.
intros w1.
autorewrite with w_rewrite rm10; auto with zarith.
rewrite Z.pow_1_r; auto with zarith.
rewrite Z.mul_comm; auto.
Qed.
Theorem ww_add_mult_mult_2: forall w,
[[ww_add_mul_div (w_0W w_1) w W0]] = 2 * [[w]] mod wwB.
intros w1.
rewrite spec_ww_add_mul_div; auto with zarith.
autorewrite with w_rewrite rm10.
rewrite spec_w_0W; rewrite spec_w_1.
rewrite Z.pow_1_r; auto with zarith.
rewrite Z.mul_comm; auto.
rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
red; simpl; intros; discriminate.
Qed.
Theorem ww_add_mult_mult_2_plus_1: forall w,
[[ww_add_mul_div (w_0W w_1) w wwBm1]] =
(2 * [[w]] + 1) mod wwB.
intros w1.
rewrite spec_ww_add_mul_div; auto with zarith.
rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
rewrite Z.pow_1_r; auto with zarith.
f_equal; auto.
rewrite Z.mul_comm; f_equal; auto.
autorewrite with w_rewrite rm10.
unfold ww_digits, base.
symmetry; apply Zdiv_unique with (r := 2 ^ (Zpos (ww_digits w_digits) - 1) -1);
auto with zarith.
unfold ww_digits; split; auto with zarith.
match goal with |- 0 <= ?X - 1 =>
assert (0 < X); auto with zarith
end.
apply Z.pow_pos_nonneg; auto with zarith.
match goal with |- 0 <= ?X - 1 =>
assert (0 < X); auto with zarith; red; reflexivity
end.
unfold ww_digits; autorewrite with rm10.
assert (tmp: forall p q r, p + (q - r) = p + q - r); auto with zarith;
rewrite tmp; clear tmp.
assert (tmp: forall p, p + p = 2 * p); auto with zarith;
rewrite tmp; clear tmp.
f_equal; auto.
pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp;
auto with zarith.
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite tmp; clear tmp; auto.
match goal with |- ?X - 1 >= 0 =>
assert (0 < X); auto with zarith; red; reflexivity
end.
rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
red; simpl; intros; discriminate.
Qed.
Theorem Zplus_mod_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1.
intros a1 b1 H; rewrite Zplus_mod; auto with zarith.
rewrite Z_mod_same; try rewrite Z.add_0_r; auto with zarith.
apply Zmod_mod; auto.
Qed.
Lemma C1_plus_wB: forall x, [+|C1 x|] = wB + [|x|].
unfold interp_carry; auto with zarith.
Qed.
Theorem spec_w_div2s : forall a1 a2 b,
wB/2 <= [|b|] -> [+|a1|] <= 2 * [|b|] ->
let (q,r) := w_div2s a1 a2 b in
[+|a1|] * wB + [|a2|] = [+|q|] * (2 * [|b|]) + [+|r|] /\ 0 <= [+|r|] < 2 * [|b|].
intros a1 a2 b H.
assert (HH: 0 < [|b|]); auto with zarith.
assert (U := wB_pos w_digits).
apply Z.lt_le_trans with (2 := H); auto with zarith.
apply Z.lt_le_trans with 1; auto with zarith.
apply Zdiv_le_lower_bound; auto with zarith.
unfold w_div2s; case a1; intros w0 H0.
match goal with |- context[w_div21c ?y ?z ?t] =>
generalize (@spec_w_div21c y z t H);
case (w_div21c y z t); autorewrite with w_rewrite;
auto
end.
intros c w1; case c.
simpl interp_carry; intros w2 (Hw1, Hw2).
match goal with |- context[w_is_even ?y] =>
generalize (spec_w_is_even y);
case (w_is_even y)
end.
repeat rewrite C0_id.
rewrite add_mult_div_2.
intros H1; split; auto with zarith.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; ring.
repeat rewrite C0_id.
rewrite add_mult_div_2.
rewrite spec_w_add_c; auto with zarith.
intros H1; split; auto with zarith.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; ring.
intros w2; rewrite C1_plus_wB.
intros (Hw1, Hw2).
match goal with |- context[w_is_even ?y] =>
generalize (spec_w_is_even y);
case (w_is_even y)
end.
repeat rewrite C0_id.
intros H1; split; auto with zarith.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1.
repeat rewrite C0_id.
rewrite add_mult_div_2_plus_1; unfold base.
match goal with |- context[_ ^ ?X] =>
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
try rewrite Z.pow_1_r; auto with zarith
end.
rewrite Pos2Z.inj_sub_max; auto with zarith.
rewrite Z.max_r; auto with zarith.
ring.
repeat rewrite C0_id.
rewrite spec_w_add_c; auto with zarith.
intros H1; split; auto with zarith.
rewrite add_mult_div_2_plus_1.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1.
unfold base.
match goal with |- context[_ ^ ?X] =>
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
try rewrite Z.pow_1_r; auto with zarith
end.
rewrite Pos2Z.inj_sub_max; auto with zarith.
rewrite Z.max_r; auto with zarith.
ring.
repeat rewrite C1_plus_wB in H0.
rewrite C1_plus_wB.
match goal with |- context[w_div21c ?y ?z ?t] =>
generalize (@spec_w_div21c y z t H);
case (w_div21c y z t); autorewrite with w_rewrite;
auto
end.
intros c w1; case c.
intros w2 (Hw1, Hw2); rewrite C0_id in Hw1.
rewrite <- Zplus_mod_one in Hw1; auto with zarith.
rewrite Zmod_small in Hw1; auto with zarith.
match goal with |- context[w_is_even ?y] =>
generalize (spec_w_is_even y);
case (w_is_even y)
end.
repeat rewrite C0_id.
intros H1; split; auto with zarith.
rewrite add_mult_div_2_plus_1.
replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
auto with zarith.
rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; unfold base.
match goal with |- context[_ ^ ?X] =>
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
try rewrite Z.pow_1_r; auto with zarith
end.
rewrite Pos2Z.inj_sub_max; auto with zarith.
rewrite Z.max_r; auto with zarith.
ring.
repeat rewrite C0_id.
rewrite add_mult_div_2_plus_1.
rewrite spec_w_add_c; auto with zarith.
intros H1; split; auto with zarith.
replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
auto with zarith.
rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; unfold base.
match goal with |- context[_ ^ ?X] =>
assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
try rewrite Z.pow_1_r; auto with zarith
end.
rewrite Pos2Z.inj_sub_max; auto with zarith.
rewrite Z.max_r; auto with zarith.
ring.
split; auto with zarith.
destruct (spec_to_Z b);auto with zarith.
destruct (spec_to_Z w0);auto with zarith.
destruct (spec_to_Z b);auto with zarith.
destruct (spec_to_Z b);auto with zarith.
intros w2; rewrite C1_plus_wB.
rewrite <- Zplus_mod_one; auto with zarith.
rewrite Zmod_small; auto with zarith.
intros (Hw1, Hw2).
match goal with |- context[w_is_even ?y] =>
generalize (spec_w_is_even y);
case (w_is_even y)
end.
repeat (rewrite C0_id || rewrite C1_plus_wB).
intros H1; split; auto with zarith.
rewrite add_mult_div_2.
replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
auto with zarith.
rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; ring.
repeat (rewrite C0_id || rewrite C1_plus_wB).
rewrite spec_w_add_c; auto with zarith.
intros H1; split; auto with zarith.
rewrite add_mult_div_2.
replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
auto with zarith.
rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc.
rewrite Hw1.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
auto with zarith.
rewrite H1; ring.
split; auto with zarith.
destruct (spec_to_Z b);auto with zarith.
destruct (spec_to_Z w0);auto with zarith.
destruct (spec_to_Z b);auto with zarith.
destruct (spec_to_Z b);auto with zarith.
Qed.
Theorem wB_div_4: 4 * (wB / 4) = wB.
Proof.
unfold base.
assert (2 ^ Zpos w_digits =
4 * (2 ^ (Zpos w_digits - 2))).
change 4 with (2 ^ 2).
rewrite <- Zpower_exp; auto with zarith.
f_equal; auto with zarith.
rewrite H.
rewrite (fun x => (Z.mul_comm 4 (2 ^x))).
rewrite Z_div_mult; auto with zarith.
Qed.
Theorem Zsquare_mult: forall p, p ^ 2 = p * p.
intros p; change 2 with (1 + 1); rewrite Zpower_exp;
try rewrite Z.pow_1_r; auto with zarith.
Qed.
Theorem Zsquare_pos: forall p, 0 <= p ^ 2.
intros p; case (Z.le_gt_cases 0 p); intros H1.
rewrite Zsquare_mult; apply Z.mul_nonneg_nonneg; auto with zarith.
rewrite Zsquare_mult; replace (p * p) with ((- p) * (- p)); try ring.
apply Z.mul_nonneg_nonneg; auto with zarith.
Qed.
Lemma spec_split: forall x,
[|fst (split x)|] * wB + [|snd (split x)|] = [[x]].
intros x; case x; simpl; autorewrite with w_rewrite;
auto with zarith.
Qed.
Theorem mult_wwB: forall x y, [|x|] * [|y|] < wwB.
Proof.
intros x y; rewrite wwB_wBwB; rewrite Z.pow_2_r.
generalize (spec_to_Z x); intros U.
generalize (spec_to_Z y); intros U1.
apply Z.le_lt_trans with ((wB -1 ) * (wB - 1)); auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r; auto with zarith.
Qed.
Hint Resolve mult_wwB.
Lemma spec_ww_sqrt2 : forall x y,
wwB/ 4 <= [[x]] ->
let (s,r) := ww_sqrt2 x y in
[||WW x y||] = [[s]] ^ 2 + [+[r]] /\
[+[r]] <= 2 * [[s]].
intros x y H; unfold ww_sqrt2.
repeat match goal with |- context[split ?x] =>
generalize (spec_split x); case (split x)
end; simpl fst; simpl snd.
intros w0 w1 Hw0 w2 w3 Hw1.
assert (U: wB/4 <= [|w2|]).
case (Z.le_gt_cases (wB / 4) [|w2|]); auto; intros H1.
contradict H; apply Z.lt_nge.
rewrite wwB_wBwB; rewrite Z.pow_2_r.
pattern wB at 1; rewrite <- wB_div_4; rewrite <- Z.mul_assoc;
rewrite Z.mul_comm.
rewrite Z_div_mult; auto with zarith.
rewrite <- Hw1.
match goal with |- _ < ?X =>
pattern X; rewrite <- Z.add_0_r; apply beta_lex_inv;
auto with zarith
end.
destruct (spec_to_Z w3);auto with zarith.
generalize (@spec_w_sqrt2 w2 w3 U); case (w_sqrt2 w2 w3).
intros w4 c (H1, H2).
assert (U1: wB/2 <= [|w4|]).
case (Z.le_gt_cases (wB/2) [|w4|]); auto with zarith.
intros U1.
assert (U2 : [|w4|] <= wB/2 -1); auto with zarith.
assert (U3 : [|w4|] ^ 2 <= wB/4 * wB - wB + 1); auto with zarith.
match goal with |- ?X ^ 2 <= ?Y =>
rewrite Zsquare_mult;
replace Y with ((wB/2 - 1) * (wB/2 -1))
end.
apply Z.mul_le_mono_nonneg; auto with zarith.
destruct (spec_to_Z w4);auto with zarith.
destruct (spec_to_Z w4);auto with zarith.
pattern wB at 4 5; rewrite <- wB_div_2.
rewrite Z.mul_assoc.
replace ((wB / 4) * 2) with (wB / 2).
ring.
pattern wB at 1; rewrite <- wB_div_4.
change 4 with (2 * 2).
rewrite <- Z.mul_assoc; rewrite (Z.mul_comm 2).
rewrite Z_div_mult; try ring; auto with zarith.
assert (U4 : [+|c|] <= wB -2); auto with zarith.
apply Z.le_trans with (1 := H2).
match goal with |- ?X <= ?Y =>
replace Y with (2 * (wB/ 2 - 1)); auto with zarith
end.
pattern wB at 2; rewrite <- wB_div_2; auto with zarith.
match type of H1 with ?X = _ =>
assert (U5: X < wB / 4 * wB)
end.
rewrite H1; auto with zarith.
contradict U; apply Z.lt_nge.
apply Z.mul_lt_mono_pos_r with wB; auto with zarith.
destruct (spec_to_Z w4);auto with zarith.
apply Z.le_lt_trans with (2 := U5).
unfold ww_to_Z, zn2z_to_Z.
destruct (spec_to_Z w3);auto with zarith.
generalize (@spec_w_div2s c w0 w4 U1 H2).
case (w_div2s c w0 w4).
intros c0; case c0; intros w5;
repeat (rewrite C0_id || rewrite C1_plus_wB).
intros c1; case c1; intros w6;
repeat (rewrite C0_id || rewrite C1_plus_wB).
intros (H3, H4).
match goal with |- context [ww_sub_c ?y ?z] =>
generalize (spec_ww_sub_c y z); case (ww_sub_c y z)
end.
intros z; change [-[C0 z]] with ([[z]]).
change [+[C0 z]] with ([[z]]).
intros H5; rewrite spec_w_square_c in H5;
auto.
split.
unfold zn2z_to_Z; rewrite <- Hw1.
unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
rewrite <- Hw0.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H3.
rewrite H5.
unfold ww_to_Z, zn2z_to_Z.
repeat rewrite Zsquare_mult; ring.
rewrite H5.
unfold ww_to_Z, zn2z_to_Z.
match goal with |- ?X - ?Y * ?Y <= _ =>
assert (V := Zsquare_pos Y);
rewrite Zsquare_mult in V;
apply Z.le_trans with X; auto with zarith;
clear V
end.
match goal with |- ?X * wB + ?Y <= 2 * (?Z * wB + ?T) =>
apply Z.le_trans with ((2 * Z - 1) * wB + wB); auto with zarith
end.
destruct (spec_to_Z w1);auto with zarith.
match goal with |- ?X <= _ =>
replace X with (2 * [|w4|] * wB); auto with zarith
end.
rewrite Z.mul_add_distr_l; rewrite Z.mul_assoc.
destruct (spec_to_Z w5); auto with zarith.
ring.
intros z; replace [-[C1 z]] with (- wwB + [[z]]).
2: simpl; case wwB; auto with zarith.
intros H5; rewrite spec_w_square_c in H5;
auto.
match goal with |- context [ww_pred_c ?y] =>
generalize (spec_ww_pred_c y); case (ww_pred_c y)
end.
intros z1; change [-[C0 z1]] with ([[z1]]).
rewrite ww_add_mult_mult_2.
rewrite spec_ww_add_c.
rewrite spec_ww_pred.
rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]);
auto with zarith.
intros Hz1; rewrite Zmod_small; auto with zarith.
match type of H5 with -?X + ?Y = ?Z =>
assert (V: Y = Z + X);
try (rewrite <- H5; ring)
end.
split.
unfold zn2z_to_Z; rewrite <- Hw1.
unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
rewrite <- Hw0.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H3.
rewrite V.
rewrite Hz1.
unfold ww_to_Z; simpl zn2z_to_Z.
repeat rewrite Zsquare_mult; ring.
rewrite Hz1.
destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)).
assert (0 < [[WW w4 w5]]); auto with zarith.
apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith.
autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith.
apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
autorewrite with rm10.
rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith.
case (spec_to_Z w5);auto with zarith.
case (spec_to_Z w5);auto with zarith.
simpl.
assert (V2 := spec_to_Z w5);auto with zarith.
assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith.
split; auto with zarith.
assert (wwB <= 2 * [[WW w4 w5]]); auto with zarith.
apply Z.le_trans with (2 * ([|w4|] * wB)).
rewrite wwB_wBwB; rewrite Z.pow_2_r.
rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith.
assert (V2 := spec_to_Z w5);auto with zarith.
rewrite <- wB_div_2; auto with zarith.
simpl ww_to_Z; assert (V2 := spec_to_Z w5);auto with zarith.
assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith.
intros z1; change [-[C1 z1]] with (-wwB + [[z1]]).
match goal with |- context[([+[C0 ?z]])] =>
change [+[C0 z]] with ([[z]])
end.
rewrite spec_ww_add; auto with zarith.
rewrite spec_ww_pred; auto with zarith.
rewrite ww_add_mult_mult_2.
rename V1 into VV1.
assert (VV2: 0 < [[WW w4 w5]]); auto with zarith.
apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith.
autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith.
apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
autorewrite with rm10.
rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith.
assert (VV3 := spec_to_Z w5);auto with zarith.
assert (VV3 := spec_to_Z w5);auto with zarith.
simpl.
assert (VV3 := spec_to_Z w5);auto with zarith.
assert (VV3: wwB <= 2 * [[WW w4 w5]]); auto with zarith.
apply Z.le_trans with (2 * ([|w4|] * wB)).
rewrite wwB_wBwB; rewrite Z.pow_2_r.
rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith.
case (spec_to_Z w5);auto with zarith.
rewrite <- wB_div_2; auto with zarith.
simpl ww_to_Z; assert (V4 := spec_to_Z w5);auto with zarith.
rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]);
auto with zarith.
intros Hz1; rewrite Zmod_small; auto with zarith.
match type of H5 with -?X + ?Y = ?Z =>
assert (V: Y = Z + X);
try (rewrite <- H5; ring)
end.
match type of Hz1 with -?X + ?Y = -?X + ?Z - 1 =>
assert (V1: Y = Z - 1);
[replace (Z - 1) with (X + (-X + Z -1));
[rewrite <- Hz1 | idtac]; ring
| idtac]
end.
rewrite <- Zmod_unique with (q := 1) (r := -wwB + [[z1]] + [[z]]);
auto with zarith.
unfold zn2z_to_Z; rewrite <- Hw1.
unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
rewrite <- Hw0.
split.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H3.
rewrite V.
rewrite Hz1.
unfold ww_to_Z; simpl zn2z_to_Z.
repeat rewrite Zsquare_mult; ring.
assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
assert (V3 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z1);auto with zarith.
split; auto with zarith.
rewrite (Z.add_comm (-wwB)); rewrite <- Z.add_assoc.
rewrite H5.
match goal with |- 0 <= ?X + (?Y - ?Z) =>
apply Z.le_trans with (X - Z); auto with zarith
end.
2: generalize (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w6 w1)); unfold ww_to_Z; auto with zarith.
rewrite V1.
match goal with |- 0 <= ?X - 1 - ?Y =>
assert (Y < X); auto with zarith
end.
apply Z.lt_le_trans with wwB; auto with zarith.
intros (H3, H4).
match goal with |- context [ww_sub_c ?y ?z] =>
generalize (spec_ww_sub_c y z); case (ww_sub_c y z)
end.
intros z; change [-[C0 z]] with ([[z]]).
match goal with |- context[([+[C1 ?z]])] =>
replace [+[C1 z]] with (wwB + [[z]])
end.
2: simpl; case wwB; auto.
intros H5; rewrite spec_w_square_c in H5;
auto.
split.
change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
rewrite <- Hw1.
unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
rewrite <- Hw0.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H3.
rewrite H5.
unfold ww_to_Z; simpl zn2z_to_Z.
rewrite wwB_wBwB.
repeat rewrite Zsquare_mult; ring.
simpl ww_to_Z.
rewrite H5.
simpl ww_to_Z.
rewrite wwB_wBwB; rewrite Z.pow_2_r.
match goal with |- ?X * ?Y + (?Z * ?Y + ?T - ?U) <= _ =>
apply Z.le_trans with (X * Y + (Z * Y + T - 0));
auto with zarith
end.
assert (V := Zsquare_pos [|w5|]);
rewrite Zsquare_mult in V; auto with zarith.
autorewrite with rm10.
match goal with |- _ <= 2 * (?U * ?V + ?W) =>
apply Z.le_trans with (2 * U * V + 0);
auto with zarith
end.
match goal with |- ?X * ?Y + (?Z * ?Y + ?T) <= _ =>
replace (X * Y + (Z * Y + T)) with ((X + Z) * Y + T);
try ring
end.
apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith.
destruct (spec_to_Z w1);auto with zarith.
destruct (spec_to_Z w5);auto with zarith.
rewrite Z.mul_add_distr_l; auto with zarith.
rewrite Z.mul_assoc; auto with zarith.
intros z; replace [-[C1 z]] with (- wwB + [[z]]).
2: simpl; case wwB; auto with zarith.
intros H5; rewrite spec_w_square_c in H5;
auto.
match goal with |- context[([+[C0 ?z]])] =>
change [+[C0 z]] with ([[z]])
end.
match type of H5 with -?X + ?Y = ?Z =>
assert (V: Y = Z + X);
try (rewrite <- H5; ring)
end.
change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
simpl ww_to_Z.
rewrite <- Hw1.
simpl ww_to_Z in H1; rewrite H1.
rewrite <- Hw0.
split.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H3.
rewrite V.
simpl ww_to_Z.
rewrite wwB_wBwB.
repeat rewrite Zsquare_mult; ring.
rewrite V.
simpl ww_to_Z.
rewrite wwB_wBwB; rewrite Z.pow_2_r.
match goal with |- (?Z * ?Y + ?T - ?U) + ?X * ?Y <= _ =>
apply Z.le_trans with ((Z * Y + T - 0) + X * Y);
auto with zarith
end.
assert (V1 := Zsquare_pos [|w5|]);
rewrite Zsquare_mult in V1; auto with zarith.
autorewrite with rm10.
match goal with |- _ <= 2 * (?U * ?V + ?W) =>
apply Z.le_trans with (2 * U * V + 0);
auto with zarith
end.
match goal with |- (?Z * ?Y + ?T) + ?X * ?Y <= _ =>
replace ((Z * Y + T) + X * Y) with ((X + Z) * Y + T);
try ring
end.
apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith.
destruct (spec_to_Z w1);auto with zarith.
destruct (spec_to_Z w5);auto with zarith.
rewrite Z.mul_add_distr_l; auto with zarith.
rewrite Z.mul_assoc; auto with zarith.
Z.le_elim H2.
intros c1 (H3, H4).
match type of H3 with ?X = ?Y => absurd (X < Y) end.
apply Z.le_ngt; rewrite <- H3; auto with zarith.
rewrite Z.mul_add_distr_r.
apply Z.lt_le_trans with ((2 * [|w4|]) * wB + 0);
auto with zarith.
apply beta_lex_inv; auto with zarith.
destruct (spec_to_Z w0);auto with zarith.
assert (V1 := spec_to_Z w5);auto with zarith.
rewrite (Z.mul_comm wB); auto with zarith.
assert (0 <= [|w5|] * (2 * [|w4|])); auto with zarith.
intros c1 (H3, H4); rewrite H2 in H3.
match type of H3 with ?X + ?Y = (?Z + ?T) * ?U + ?V =>
assert (VV: (Y = (T * U) + V));
[replace Y with ((X + Y) - X);
[rewrite H3; ring | ring] | idtac]
end.
assert (V1 := spec_to_Z w0);auto with zarith.
assert (V2 := spec_to_Z w5);auto with zarith.
case V2; intros V3 _.
Z.le_elim V3; auto with zarith.
match type of VV with ?X = ?Y => absurd (X < Y) end.
apply Z.le_ngt; rewrite <- VV; auto with zarith.
apply Z.lt_le_trans with wB; auto with zarith.
match goal with |- _ <= ?X + _ =>
apply Z.le_trans with X; auto with zarith
end.
match goal with |- _ <= _ * ?X =>
apply Z.le_trans with (1 * X); auto with zarith
end.
autorewrite with rm10.
rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith.
rewrite <- V3 in VV; generalize VV; autorewrite with rm10;
clear VV; intros VV.
rewrite spec_ww_add_c; auto with zarith.
rewrite ww_add_mult_mult_2_plus_1.
match goal with |- context[?X mod wwB] =>
rewrite <- Zmod_unique with (q := 1) (r := -wwB + X)
end; auto with zarith.
simpl ww_to_Z.
rewrite spec_w_Bm1; auto with zarith.
split.
change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
rewrite <- Hw1.
simpl ww_to_Z in H1; rewrite H1.
rewrite <- Hw0.
match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
end.
repeat rewrite Zsquare_mult.
rewrite wwB_wBwB; ring.
rewrite H2.
rewrite wwB_wBwB.
repeat rewrite Zsquare_mult; ring.
assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith.
assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith.
simpl ww_to_Z; unfold ww_to_Z.
rewrite spec_w_Bm1; auto with zarith.
split.
rewrite wwB_wBwB; rewrite Z.pow_2_r.
match goal with |- _ <= -?X + (2 * (?Z * ?T + ?U) + ?V) =>
assert (X <= 2 * Z * T); auto with zarith
end.
apply Z.mul_le_mono_nonneg_r; auto with zarith.
rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith.
rewrite Z.mul_add_distr_l; auto with zarith.
rewrite Z.mul_assoc; auto with zarith.
match goal with |- _ + ?X < _ =>
replace X with ((2 * (([|w4|]) + 1) * wB) - 1); try ring
end.
assert (2 * ([|w4|] + 1) * wB <= 2 * wwB); auto with zarith.
rewrite <- Z.mul_assoc; apply Z.mul_le_mono_nonneg_l; auto with zarith.
rewrite wwB_wBwB; rewrite Z.pow_2_r.
apply Z.mul_le_mono_nonneg_r; auto with zarith.
case (spec_to_Z w4);auto with zarith.
Qed.
Lemma spec_ww_is_zero: forall x,
if ww_is_zero x then [[x]] = 0 else 0 < [[x]].
intro x; unfold ww_is_zero.
rewrite spec_ww_compare. case Z.compare_spec;
auto with zarith.
simpl ww_to_Z.
assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z x);auto with zarith.
Qed.
Lemma wwB_4_2: 2 * (wwB / 4) = wwB/ 2.
pattern wwB at 1; rewrite wwB_wBwB; rewrite Z.pow_2_r.
rewrite <- wB_div_2.
match goal with |- context[(2 * ?X) * (2 * ?Z)] =>
replace ((2 * X) * (2 * Z)) with ((X * Z) * 4); try ring
end.
rewrite Z_div_mult; auto with zarith.
rewrite Z.mul_assoc; rewrite wB_div_2.
rewrite wwB_div_2; ring.
Qed.
Lemma spec_ww_head1
: forall x : zn2z w,
(ww_is_even (ww_head1 x) = true) /\
(0 < [[x]] -> wwB / 4 <= 2 ^ [[ww_head1 x]] * [[x]] < wwB).
assert (U := wB_pos w_digits).
intros x; unfold ww_head1.
generalize (spec_ww_is_even (ww_head0 x)); case_eq (ww_is_even (ww_head0 x)).
intros HH H1; rewrite HH; split; auto.
intros H2.
generalize (spec_ww_head0 x H2); case (ww_head0 x); autorewrite with rm10.
intros (H3, H4); split; auto with zarith.
apply Z.le_trans with (2 := H3).
apply Zdiv_le_compat_l; auto with zarith.
intros xh xl (H3, H4); split; auto with zarith.
apply Z.le_trans with (2 := H3).
apply Zdiv_le_compat_l; auto with zarith.
intros H1.
case (spec_to_w_Z (ww_head0 x)); intros Hv1 Hv2.
assert (Hp0: 0 < [[ww_head0 x]]).
generalize (spec_ww_is_even (ww_head0 x)); rewrite H1.
generalize Hv1; case [[ww_head0 x]].
rewrite Zmod_small; auto with zarith.
intros; assert (0 < Zpos p); auto with zarith.
red; simpl; auto.
intros p H2; case H2; auto.
assert (Hp: [[ww_pred (ww_head0 x)]] = [[ww_head0 x]] - 1).
rewrite spec_ww_pred.
rewrite Zmod_small; auto with zarith.
intros H2; split.
generalize (spec_ww_is_even (ww_pred (ww_head0 x)));
case ww_is_even; auto.
rewrite Hp.
rewrite Zminus_mod; auto with zarith.
rewrite H2; repeat rewrite Zmod_small; auto with zarith.
intros H3; rewrite Hp.
case (spec_ww_head0 x); auto; intros Hv3 Hv4.
assert (Hu: forall u, 0 < u -> 2 * 2 ^ (u - 1) = 2 ^u).
intros u Hu.
pattern 2 at 1; rewrite <- Z.pow_1_r.
rewrite <- Zpower_exp; auto with zarith.
ring_simplify (1 + (u - 1)); auto with zarith.
split; auto with zarith.
apply Z.mul_le_mono_pos_r with 2; auto with zarith.
repeat rewrite (fun x => Z.mul_comm x 2).
rewrite wwB_4_2.
rewrite Z.mul_assoc; rewrite Hu; auto with zarith.
apply Z.le_lt_trans with (2 * 2 ^ ([[ww_head0 x]] - 1) * [[x]]); auto with zarith;
rewrite Hu; auto with zarith.
apply Z.mul_le_mono_nonneg_r; auto with zarith.
apply Zpower_le_monotone; auto with zarith.
Qed.
Theorem wwB_4_wB_4: wwB / 4 = wB / 4 * wB.
Proof.
symmetry; apply Zdiv_unique with 0; auto with zarith.
rewrite Z.mul_assoc; rewrite wB_div_4; auto with zarith.
rewrite wwB_wBwB; ring.
Qed.
Lemma spec_ww_sqrt : forall x,
[[ww_sqrt x]] ^ 2 <= [[x]] < ([[ww_sqrt x]] + 1) ^ 2.
assert (U := wB_pos w_digits).
intro x; unfold ww_sqrt.
generalize (spec_ww_is_zero x); case (ww_is_zero x).
simpl ww_to_Z; simpl Z.pow; unfold Z.pow_pos; simpl;
auto with zarith.
intros H1.
rewrite spec_ww_compare. case Z.compare_spec;
simpl ww_to_Z; autorewrite with rm10.
generalize H1; case x.
intros HH; contradict HH; simpl ww_to_Z; auto with zarith.
intros w0 w1; simpl ww_to_Z; autorewrite with w_rewrite rm10.
intros H2; case (spec_ww_head1 (WW w0 w1)); intros H3 H4 H5.
generalize (H4 H2); clear H4; rewrite H5; clear H5; autorewrite with rm10.
intros (H4, H5).
assert (V: wB/4 <= [|w0|]).
apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10.
rewrite <- wwB_4_wB_4; auto.
generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith.
case (w_sqrt2 w0 w1); intros w2 c.
simpl ww_to_Z; simpl fst.
case c; unfold interp_carry; autorewrite with rm10.
intros w3 (H6, H7); rewrite H6.
assert (V1 := spec_to_Z w3);auto with zarith.
split; auto with zarith.
apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith.
match goal with |- ?X < ?Z =>
replace Z with (X + 1); auto with zarith
end.
repeat rewrite Zsquare_mult; ring.
intros w3 (H6, H7); rewrite H6.
assert (V1 := spec_to_Z w3);auto with zarith.
split; auto with zarith.
apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith.
match goal with |- ?X < ?Z =>
replace Z with (X + 1); auto with zarith
end.
repeat rewrite Zsquare_mult; ring.
intros HH; case (spec_to_w_Z (ww_head1 x)); auto with zarith.
intros Hv1.
case (spec_ww_head1 x); intros Hp1 Hp2.
generalize (Hp2 H1); clear Hp2; intros Hp2.
assert (Hv2: [[ww_head1 x]] <= Zpos (xO w_digits)).
case (Z.le_gt_cases (Zpos (xO w_digits)) [[ww_head1 x]]); auto with zarith; intros HH1.
case Hp2; intros _ HH2; contradict HH2.
apply Z.le_ngt; unfold base.
apply Z.le_trans with (2 ^ [[ww_head1 x]]).
apply Zpower_le_monotone; auto with zarith.
pattern (2 ^ [[ww_head1 x]]) at 1;
rewrite <- (Z.mul_1_r (2 ^ [[ww_head1 x]])).
apply Z.mul_le_mono_nonneg_l; auto with zarith.
generalize (spec_ww_add_mul_div x W0 (ww_head1 x) Hv2);
case ww_add_mul_div.
simpl ww_to_Z; autorewrite with w_rewrite rm10.
rewrite Zmod_small; auto with zarith.
intros H2. symmetry in H2. rewrite Z.mul_eq_0 in H2. destruct H2 as [H2|H2].
rewrite H2; unfold Z.pow, Z.pow_pos; simpl; auto with zarith.
match type of H2 with ?X = ?Y =>
absurd (Y < X); try (rewrite H2; auto with zarith; fail)
end.
apply Z.pow_pos_nonneg; auto with zarith.
split; auto with zarith.
case Hp2; intros _ tmp; apply Z.le_lt_trans with (2 := tmp);
clear tmp.
rewrite Z.mul_comm; apply Z.mul_le_mono_nonneg_r; auto with zarith.
assert (Hv0: [[ww_head1 x]] = 2 * ([[ww_head1 x]]/2)).
pattern [[ww_head1 x]] at 1; rewrite (Z_div_mod_eq [[ww_head1 x]] 2);
auto with zarith.
generalize (spec_ww_is_even (ww_head1 x)); rewrite Hp1;
intros tmp; rewrite tmp; rewrite Z.add_0_r; auto.
intros w0 w1; autorewrite with w_rewrite rm10.
rewrite Zmod_small; auto with zarith.
2: rewrite Z.mul_comm; auto with zarith.
intros H2.
assert (V: wB/4 <= [|w0|]).
apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10.
simpl ww_to_Z in H2; rewrite H2.
rewrite <- wwB_4_wB_4; auto with zarith.
rewrite Z.mul_comm; auto with zarith.
assert (V1 := spec_to_Z w1);auto with zarith.
generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith.
case (w_sqrt2 w0 w1); intros w2 c.
case (spec_to_Z w2); intros HH1 HH2.
simpl ww_to_Z; simpl fst.
assert (Hv3: [[ww_pred ww_zdigits]]
= Zpos (xO w_digits) - 1).
rewrite spec_ww_pred; rewrite spec_ww_zdigits.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
apply Z.lt_le_trans with (Zpos (xO w_digits)); auto with zarith.
unfold base; apply Zpower2_le_lin; auto with zarith.
assert (Hv4: [[ww_head1 x]]/2 < wB).
apply Z.le_lt_trans with (Zpos w_digits).
apply Z.mul_le_mono_pos_r with 2; auto with zarith.
repeat rewrite (fun x => Z.mul_comm x 2).
rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto.
unfold base; apply Zpower2_lt_lin; auto with zarith.
assert (Hv5: [[(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))]]
= [[ww_head1 x]]/2).
rewrite spec_ww_add_mul_div.
simpl ww_to_Z; autorewrite with rm10.
rewrite Hv3.
ring_simplify (Zpos (xO w_digits) - (Zpos (xO w_digits) - 1)).
rewrite Z.pow_1_r.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
apply Z.lt_le_trans with (1 := Hv4); auto with zarith.
unfold base; apply Zpower_le_monotone; auto with zarith.
split; unfold ww_digits; try rewrite Pos2Z.inj_xO; auto with zarith.
rewrite Hv3; auto with zarith.
assert (Hv6: [|low(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))|]
= [[ww_head1 x]]/2).
rewrite spec_low.
rewrite Hv5; rewrite Zmod_small; auto with zarith.
rewrite spec_w_add_mul_div; auto with zarith.
rewrite spec_w_sub; auto with zarith.
rewrite spec_w_0.
simpl ww_to_Z; autorewrite with rm10.
rewrite Hv6; rewrite spec_w_zdigits.
rewrite (fun x y => Zmod_small (x - y)).
ring_simplify (Zpos w_digits - (Zpos w_digits - [[ww_head1 x]] / 2)).
rewrite Zmod_small.
simpl ww_to_Z in H2; rewrite H2; auto with zarith.
intros (H4, H5); split.
apply Z.mul_le_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith.
rewrite H4.
apply Z.le_trans with ([|w2|] ^ 2); auto with zarith.
rewrite Z.mul_comm.
pattern [[ww_head1 x]] at 1;
rewrite Hv0; auto with zarith.
rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r;
auto with zarith.
assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2);
try (intros; repeat rewrite Zsquare_mult; ring);
rewrite tmp; clear tmp.
apply Zpower_le_monotone3; auto with zarith.
split; auto with zarith.
pattern [|w2|] at 2;
rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]] / 2)));
auto with zarith.
match goal with |- ?X <= ?X + ?Y =>
assert (0 <= Y); auto with zarith
end.
case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]] / 2))); auto with zarith.
case c; unfold interp_carry; autorewrite with rm10;
intros w3; assert (V3 := spec_to_Z w3);auto with zarith.
apply Z.mul_lt_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith.
rewrite H4.
apply Z.le_lt_trans with ([|w2|] ^ 2 + 2 * [|w2|]); auto with zarith.
apply Z.lt_le_trans with (([|w2|] + 1) ^ 2); auto with zarith.
match goal with |- ?X < ?Y =>
replace Y with (X + 1); auto with zarith
end.
repeat rewrite (Zsquare_mult); ring.
rewrite Z.mul_comm.
pattern [[ww_head1 x]] at 1; rewrite Hv0.
rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r;
auto with zarith.
assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2);
try (intros; repeat rewrite Zsquare_mult; ring);
rewrite tmp; clear tmp.
apply Zpower_le_monotone3; auto with zarith.
split; auto with zarith.
pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]]/2)));
auto with zarith.
rewrite <- Z.add_assoc; rewrite Z.mul_add_distr_l.
autorewrite with rm10; apply Z.add_le_mono_l; auto with zarith.
case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]]/2))); auto with zarith.
split; auto with zarith.
apply Z.le_lt_trans with ([|w2|]); auto with zarith.
apply Zdiv_le_upper_bound; auto with zarith.
pattern [|w2|] at 1; replace [|w2|] with ([|w2|] * 2 ^0);
auto with zarith.
apply Z.mul_le_mono_nonneg_l; auto with zarith.
apply Zpower_le_monotone; auto with zarith.
rewrite Z.pow_0_r; autorewrite with rm10; auto.
split; auto with zarith.
rewrite Hv0 in Hv2; rewrite (Pos2Z.inj_xO w_digits) in Hv2; auto with zarith.
apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
unfold base; apply Zpower2_lt_lin; auto with zarith.
rewrite spec_w_sub; auto with zarith.
rewrite Hv6; rewrite spec_w_zdigits; auto with zarith.
assert (Hv7: 0 < [[ww_head1 x]]/2); auto with zarith.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
assert ([[ww_head1 x]]/2 <= Zpos w_digits); auto with zarith.
apply Z.mul_le_mono_pos_r with 2; auto with zarith.
repeat rewrite (fun x => Z.mul_comm x 2).
rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto with zarith.
apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
unfold base; apply Zpower2_lt_lin; auto with zarith.
Qed.
End DoubleSqrt.
|