1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
(*i $Id: DoubleCyclic.v 13323 2010-07-24 15:57:30Z herbelin $ i*)
Set Implicit Arguments.
Require Import ZArith.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.
Require Import DoubleAdd.
Require Import DoubleSub.
Require Import DoubleMul.
Require Import DoubleSqrt.
Require Import DoubleLift.
Require Import DoubleDivn1.
Require Import DoubleDiv.
Require Import CyclicAxioms.
Local Open Scope Z_scope.
Section Z_2nZ.
Variable w : Type.
Variable w_op : znz_op w.
Let w_digits := w_op.(znz_digits).
Let w_zdigits := w_op.(znz_zdigits).
Let w_to_Z := w_op.(znz_to_Z).
Let w_of_pos := w_op.(znz_of_pos).
Let w_head0 := w_op.(znz_head0).
Let w_tail0 := w_op.(znz_tail0).
Let w_0 := w_op.(znz_0).
Let w_1 := w_op.(znz_1).
Let w_Bm1 := w_op.(znz_Bm1).
Let w_compare := w_op.(znz_compare).
Let w_eq0 := w_op.(znz_eq0).
Let w_opp_c := w_op.(znz_opp_c).
Let w_opp := w_op.(znz_opp).
Let w_opp_carry := w_op.(znz_opp_carry).
Let w_succ_c := w_op.(znz_succ_c).
Let w_add_c := w_op.(znz_add_c).
Let w_add_carry_c := w_op.(znz_add_carry_c).
Let w_succ := w_op.(znz_succ).
Let w_add := w_op.(znz_add).
Let w_add_carry := w_op.(znz_add_carry).
Let w_pred_c := w_op.(znz_pred_c).
Let w_sub_c := w_op.(znz_sub_c).
Let w_sub_carry_c := w_op.(znz_sub_carry_c).
Let w_pred := w_op.(znz_pred).
Let w_sub := w_op.(znz_sub).
Let w_sub_carry := w_op.(znz_sub_carry).
Let w_mul_c := w_op.(znz_mul_c).
Let w_mul := w_op.(znz_mul).
Let w_square_c := w_op.(znz_square_c).
Let w_div21 := w_op.(znz_div21).
Let w_div_gt := w_op.(znz_div_gt).
Let w_div := w_op.(znz_div).
Let w_mod_gt := w_op.(znz_mod_gt).
Let w_mod := w_op.(znz_mod).
Let w_gcd_gt := w_op.(znz_gcd_gt).
Let w_gcd := w_op.(znz_gcd).
Let w_add_mul_div := w_op.(znz_add_mul_div).
Let w_pos_mod := w_op.(znz_pos_mod).
Let w_is_even := w_op.(znz_is_even).
Let w_sqrt2 := w_op.(znz_sqrt2).
Let w_sqrt := w_op.(znz_sqrt).
Let _zn2z := zn2z w.
Let wB := base w_digits.
Let w_Bm2 := w_pred w_Bm1.
Let ww_1 := ww_1 w_0 w_1.
Let ww_Bm1 := ww_Bm1 w_Bm1.
Let w_add2 a b := match w_add_c a b with C0 p => WW w_0 p | C1 p => WW w_1 p end.
Let _ww_digits := xO w_digits.
Let _ww_zdigits := w_add2 w_zdigits w_zdigits.
Let to_Z := zn2z_to_Z wB w_to_Z.
Let w_W0 := znz_W0 w_op.
Let w_0W := znz_0W w_op.
Let w_WW := znz_WW w_op.
Let ww_of_pos p :=
match w_of_pos p with
| (N0, l) => (N0, WW w_0 l)
| (Npos ph,l) =>
let (n,h) := w_of_pos ph in (n, w_WW h l)
end.
Let head0 :=
Eval lazy beta delta [ww_head0] in
ww_head0 w_0 w_0W w_compare w_head0 w_add2 w_zdigits _ww_zdigits.
Let tail0 :=
Eval lazy beta delta [ww_tail0] in
ww_tail0 w_0 w_0W w_compare w_tail0 w_add2 w_zdigits _ww_zdigits.
Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW w).
Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W w).
Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 w).
(* ** Comparison ** *)
Let compare :=
Eval lazy beta delta[ww_compare] in ww_compare w_0 w_compare.
Let eq0 (x:zn2z w) :=
match x with
| W0 => true
| _ => false
end.
(* ** Opposites ** *)
Let opp_c :=
Eval lazy beta delta [ww_opp_c] in ww_opp_c w_0 w_opp_c w_opp_carry.
Let opp :=
Eval lazy beta delta [ww_opp] in ww_opp w_0 w_opp_c w_opp_carry w_opp.
Let opp_carry :=
Eval lazy beta delta [ww_opp_carry] in ww_opp_carry w_WW ww_Bm1 w_opp_carry.
(* ** Additions ** *)
Let succ_c :=
Eval lazy beta delta [ww_succ_c] in ww_succ_c w_0 ww_1 w_succ_c.
Let add_c :=
Eval lazy beta delta [ww_add_c] in ww_add_c w_WW w_add_c w_add_carry_c.
Let add_carry_c :=
Eval lazy beta iota delta [ww_add_carry_c ww_succ_c] in
ww_add_carry_c w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c.
Let succ :=
Eval lazy beta delta [ww_succ] in ww_succ w_W0 ww_1 w_succ_c w_succ.
Let add :=
Eval lazy beta delta [ww_add] in ww_add w_add_c w_add w_add_carry.
Let add_carry :=
Eval lazy beta iota delta [ww_add_carry ww_succ] in
ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ w_add w_add_carry.
(* ** Subtractions ** *)
Let pred_c :=
Eval lazy beta delta [ww_pred_c] in ww_pred_c w_Bm1 w_WW ww_Bm1 w_pred_c.
Let sub_c :=
Eval lazy beta iota delta [ww_sub_c ww_opp_c] in
ww_sub_c w_0 w_WW w_opp_c w_opp_carry w_sub_c w_sub_carry_c.
Let sub_carry_c :=
Eval lazy beta iota delta [ww_sub_carry_c ww_pred_c ww_opp_carry] in
ww_sub_carry_c w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_c w_sub_carry_c.
Let pred :=
Eval lazy beta delta [ww_pred] in ww_pred w_Bm1 w_WW ww_Bm1 w_pred_c w_pred.
Let sub :=
Eval lazy beta iota delta [ww_sub ww_opp] in
ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry.
Let sub_carry :=
Eval lazy beta iota delta [ww_sub_carry ww_pred ww_opp_carry] in
ww_sub_carry w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_carry_c w_pred
w_sub w_sub_carry.
(* ** Multiplication ** *)
Let mul_c :=
Eval lazy beta iota delta [ww_mul_c double_mul_c] in
ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry.
Let karatsuba_c :=
Eval lazy beta iota delta [ww_karatsuba_c double_mul_c kara_prod] in
ww_karatsuba_c w_0 w_1 w_WW w_W0 w_compare w_add w_sub w_mul_c
add_c add add_carry sub_c sub.
Let mul :=
Eval lazy beta delta [ww_mul] in
ww_mul w_W0 w_add w_mul_c w_mul add.
Let square_c :=
Eval lazy beta delta [ww_square_c] in
ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add add_carry.
(* Division operation *)
Let div32 :=
Eval lazy beta iota delta [w_div32] in
w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c.
Let div21 :=
Eval lazy beta iota delta [ww_div21] in
ww_div21 w_0 w_0W div32 ww_1 compare sub.
Let low (p: zn2z w) := match p with WW _ p1 => p1 | _ => w_0 end.
Let add_mul_div :=
Eval lazy beta delta [ww_add_mul_div] in
ww_add_mul_div w_0 w_WW w_W0 w_0W compare w_add_mul_div sub w_zdigits low.
Let div_gt :=
Eval lazy beta delta [ww_div_gt] in
ww_div_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp
w_opp_carry w_sub_c w_sub w_sub_carry
w_div_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits.
Let div :=
Eval lazy beta delta [ww_div] in ww_div ww_1 compare div_gt.
Let mod_gt :=
Eval lazy beta delta [ww_mod_gt] in
ww_mod_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry
w_mod_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div w_zdigits.
Let mod_ :=
Eval lazy beta delta [ww_mod] in ww_mod compare mod_gt.
Let pos_mod :=
Eval lazy beta delta [ww_pos_mod] in
ww_pos_mod w_0 w_zdigits w_WW w_pos_mod compare w_0W low sub _ww_zdigits.
Let is_even :=
Eval lazy beta delta [ww_is_even] in ww_is_even w_is_even.
Let sqrt2 :=
Eval lazy beta delta [ww_sqrt2] in
ww_sqrt2 w_is_even w_compare w_0 w_1 w_Bm1 w_0W w_sub w_square_c
w_div21 w_add_mul_div w_zdigits w_add_c w_sqrt2 w_pred pred_c
pred add_c add sub_c add_mul_div.
Let sqrt :=
Eval lazy beta delta [ww_sqrt] in
ww_sqrt w_is_even w_0 w_sub w_add_mul_div w_zdigits
_ww_zdigits w_sqrt2 pred add_mul_div head0 compare low.
Let gcd_gt_fix :=
Eval cbv beta delta [ww_gcd_gt_aux ww_gcd_gt_body] in
ww_gcd_gt_aux w_0 w_WW w_0W w_compare w_opp_c w_opp w_opp_carry
w_sub_c w_sub w_sub_carry w_gcd_gt
w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div
w_zdigits.
Let gcd_cont :=
Eval lazy beta delta [gcd_cont] in gcd_cont ww_1 w_1 w_compare.
Let gcd_gt :=
Eval lazy beta delta [ww_gcd_gt] in
ww_gcd_gt w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
Let gcd :=
Eval lazy beta delta [ww_gcd] in
ww_gcd compare w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
(* ** Record of operators on 2 words *)
Definition mk_zn2z_op :=
mk_znz_op _ww_digits _ww_zdigits
to_Z ww_of_pos head0 tail0
W0 ww_1 ww_Bm1
compare eq0
opp_c opp opp_carry
succ_c add_c add_carry_c
succ add add_carry
pred_c sub_c sub_carry_c
pred sub sub_carry
mul_c mul square_c
div21 div_gt div
mod_gt mod_
gcd_gt gcd
add_mul_div
pos_mod
is_even
sqrt2
sqrt.
Definition mk_zn2z_op_karatsuba :=
mk_znz_op _ww_digits _ww_zdigits
to_Z ww_of_pos head0 tail0
W0 ww_1 ww_Bm1
compare eq0
opp_c opp opp_carry
succ_c add_c add_carry_c
succ add add_carry
pred_c sub_c sub_carry_c
pred sub sub_carry
karatsuba_c mul square_c
div21 div_gt div
mod_gt mod_
gcd_gt gcd
add_mul_div
pos_mod
is_even
sqrt2
sqrt.
(* Proof *)
Variable op_spec : znz_spec w_op.
Hint Resolve
(spec_to_Z op_spec)
(spec_of_pos op_spec)
(spec_0 op_spec)
(spec_1 op_spec)
(spec_Bm1 op_spec)
(spec_compare op_spec)
(spec_eq0 op_spec)
(spec_opp_c op_spec)
(spec_opp op_spec)
(spec_opp_carry op_spec)
(spec_succ_c op_spec)
(spec_add_c op_spec)
(spec_add_carry_c op_spec)
(spec_succ op_spec)
(spec_add op_spec)
(spec_add_carry op_spec)
(spec_pred_c op_spec)
(spec_sub_c op_spec)
(spec_sub_carry_c op_spec)
(spec_pred op_spec)
(spec_sub op_spec)
(spec_sub_carry op_spec)
(spec_mul_c op_spec)
(spec_mul op_spec)
(spec_square_c op_spec)
(spec_div21 op_spec)
(spec_div_gt op_spec)
(spec_div op_spec)
(spec_mod_gt op_spec)
(spec_mod op_spec)
(spec_gcd_gt op_spec)
(spec_gcd op_spec)
(spec_head0 op_spec)
(spec_tail0 op_spec)
(spec_add_mul_div op_spec)
(spec_pos_mod)
(spec_is_even)
(spec_sqrt2)
(spec_sqrt)
(spec_W0 op_spec)
(spec_0W op_spec)
(spec_WW op_spec).
Ltac wwauto := unfold ww_to_Z; auto.
Let wwB := base _ww_digits.
Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
Notation "[+| c |]" :=
(interp_carry 1 wwB to_Z c) (at level 0, x at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wwB to_Z c) (at level 0, x at level 99).
Notation "[[ x ]]" := (zn2z_to_Z wwB to_Z x) (at level 0, x at level 99).
Let spec_ww_to_Z : forall x, 0 <= [| x |] < wwB.
Proof. refine (spec_ww_to_Z w_digits w_to_Z _);auto. Qed.
Let spec_ww_of_pos : forall p,
Zpos p = (Z_of_N (fst (ww_of_pos p)))*wwB + [|(snd (ww_of_pos p))|].
Proof.
unfold ww_of_pos;intros.
assert (H:= spec_of_pos op_spec p);unfold w_of_pos;
destruct (znz_of_pos w_op p). simpl in H.
rewrite H;clear H;destruct n;simpl to_Z.
simpl;unfold w_to_Z,w_0;rewrite (spec_0 op_spec);trivial.
unfold Z_of_N; assert (H:= spec_of_pos op_spec p0);
destruct (znz_of_pos w_op p0). simpl in H.
rewrite H;unfold fst, snd,Z_of_N, to_Z.
rewrite (spec_WW op_spec).
replace wwB with (wB*wB).
unfold wB,w_to_Z,w_digits;clear H;destruct n;ring.
symmetry. rewrite <- Zpower_2; exact (wwB_wBwB w_digits).
Qed.
Let spec_ww_0 : [|W0|] = 0.
Proof. reflexivity. Qed.
Let spec_ww_1 : [|ww_1|] = 1.
Proof. refine (spec_ww_1 w_0 w_1 w_digits w_to_Z _ _);auto. Qed.
Let spec_ww_Bm1 : [|ww_Bm1|] = wwB - 1.
Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed.
Let spec_ww_compare :
forall x y,
match compare x y with
| Eq => [|x|] = [|y|]
| Lt => [|x|] < [|y|]
| Gt => [|x|] > [|y|]
end.
Proof.
refine (spec_ww_compare w_0 w_digits w_to_Z w_compare _ _ _);auto.
exact (spec_compare op_spec).
Qed.
Let spec_ww_eq0 : forall x, eq0 x = true -> [|x|] = 0.
Proof. destruct x;simpl;intros;trivial;discriminate. Qed.
Let spec_ww_opp_c : forall x, [-|opp_c x|] = -[|x|].
Proof.
refine(spec_ww_opp_c w_0 w_0 W0 w_opp_c w_opp_carry w_digits w_to_Z _ _ _ _);
auto.
Qed.
Let spec_ww_opp : forall x, [|opp x|] = (-[|x|]) mod wwB.
Proof.
refine(spec_ww_opp w_0 w_0 W0 w_opp_c w_opp_carry w_opp
w_digits w_to_Z _ _ _ _ _);
auto.
Qed.
Let spec_ww_opp_carry : forall x, [|opp_carry x|] = wwB - [|x|] - 1.
Proof.
refine (spec_ww_opp_carry w_WW ww_Bm1 w_opp_carry w_digits w_to_Z _ _ _);
wwauto.
Qed.
Let spec_ww_succ_c : forall x, [+|succ_c x|] = [|x|] + 1.
Proof.
refine (spec_ww_succ_c w_0 w_0 ww_1 w_succ_c w_digits w_to_Z _ _ _ _);auto.
Qed.
Let spec_ww_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|].
Proof.
refine (spec_ww_add_c w_WW w_add_c w_add_carry_c w_digits w_to_Z _ _ _);wwauto.
Qed.
Let spec_ww_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|]+[|y|]+1.
Proof.
refine (spec_ww_add_carry_c w_0 w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c
w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_succ : forall x, [|succ x|] = ([|x|] + 1) mod wwB.
Proof.
refine (spec_ww_succ w_W0 ww_1 w_succ_c w_succ w_digits w_to_Z _ _ _ _ _);
wwauto.
Qed.
Let spec_ww_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wwB.
Proof.
refine (spec_ww_add w_add_c w_add w_add_carry w_digits w_to_Z _ _ _ _);auto.
Qed.
Let spec_ww_add_carry : forall x y, [|add_carry x y|]=([|x|]+[|y|]+1)mod wwB.
Proof.
refine (spec_ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ
w_add w_add_carry w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_pred_c : forall x, [-|pred_c x|] = [|x|] - 1.
Proof.
refine (spec_ww_pred_c w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_digits w_to_Z
_ _ _ _ _);wwauto.
Qed.
Let spec_ww_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|].
Proof.
refine (spec_ww_sub_c w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c
w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|]-[|y|]-1.
Proof.
refine (spec_ww_sub_carry_c w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
w_sub_c w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_pred : forall x, [|pred x|] = ([|x|] - 1) mod wwB.
Proof.
refine (spec_ww_pred w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_pred w_digits w_to_Z
_ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wwB.
Proof.
refine (spec_ww_sub w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c w_opp
w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_sub_carry : forall x y, [|sub_carry x y|]=([|x|]-[|y|]-1) mod wwB.
Proof.
refine (spec_ww_sub_carry w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
w_sub_carry_c w_pred w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);
wwauto.
Qed.
Let spec_ww_mul_c : forall x y, [[mul_c x y ]] = [|x|] * [|y|].
Proof.
refine (spec_ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry w_digits
w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_ww_karatsuba_c : forall x y, [[karatsuba_c x y ]] = [|x|] * [|y|].
Proof.
refine (spec_ww_karatsuba_c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _); wwauto.
unfold w_digits; apply spec_more_than_1_digit; auto.
exact (spec_compare op_spec).
Qed.
Let spec_ww_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wwB.
Proof.
refine (spec_ww_mul w_W0 w_add w_mul_c w_mul add w_digits w_to_Z _ _ _ _ _);
wwauto.
Qed.
Let spec_ww_square_c : forall x, [[square_c x]] = [|x|] * [|x|].
Proof.
refine (spec_ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add
add_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);wwauto.
Qed.
Let spec_w_div32 : forall a1 a2 a3 b1 b2,
wB / 2 <= (w_to_Z b1) ->
[|WW a1 a2|] < [|WW b1 b2|] ->
let (q, r) := div32 a1 a2 a3 b1 b2 in
(w_to_Z a1) * wwB + (w_to_Z a2) * wB + (w_to_Z a3) =
(w_to_Z q) * ((w_to_Z b1)*wB + (w_to_Z b2)) + [|r|] /\
0 <= [|r|] < (w_to_Z b1)*wB + w_to_Z b2.
Proof.
refine (spec_w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c w_digits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
unfold w_Bm2, w_to_Z, w_pred, w_Bm1.
rewrite (spec_pred op_spec);rewrite (spec_Bm1 op_spec).
unfold w_digits;rewrite Zmod_small. ring.
assert (H:= wB_pos(znz_digits w_op)). omega.
exact (spec_compare op_spec).
exact (spec_div21 op_spec).
Qed.
Let spec_ww_div21 : forall a1 a2 b,
wwB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := div21 a1 a2 b in
[|a1|] *wwB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
refine (spec_ww_div21 w_0 w_0W div32 ww_1 compare sub w_digits w_to_Z
_ _ _ _ _ _ _);wwauto.
Qed.
Let spec_add2: forall x y,
[|w_add2 x y|] = w_to_Z x + w_to_Z y.
unfold w_add2.
intros xh xl; generalize (spec_add_c op_spec xh xl).
unfold w_add_c; case znz_add_c; unfold interp_carry; simpl ww_to_Z.
intros w0 Hw0; simpl; unfold w_to_Z; rewrite Hw0.
unfold w_0; rewrite spec_0; simpl; auto with zarith.
intros w0; rewrite Zmult_1_l; simpl.
unfold w_to_Z, w_1; rewrite spec_1; auto with zarith.
rewrite Zmult_1_l; auto.
Qed.
Let spec_low: forall x,
w_to_Z (low x) = [|x|] mod wB.
intros x; case x; simpl low.
unfold ww_to_Z, w_to_Z, w_0; rewrite (spec_0 op_spec); simpl.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
unfold wB, base; auto with zarith.
intros xh xl; simpl.
rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith.
rewrite Zmod_small; auto with zarith.
unfold wB, base; auto with zarith.
Qed.
Let spec_ww_digits:
[|_ww_zdigits|] = Zpos (xO w_digits).
Proof.
unfold w_to_Z, _ww_zdigits.
rewrite spec_add2.
unfold w_to_Z, w_zdigits, w_digits.
rewrite spec_zdigits; auto.
rewrite Zpos_xO; auto with zarith.
Qed.
Let spec_ww_head00 : forall x, [|x|] = 0 -> [|head0 x|] = Zpos _ww_digits.
Proof.
refine (spec_ww_head00 w_0 w_0W
w_compare w_head0 w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); auto.
exact (spec_compare op_spec).
exact (spec_head00 op_spec).
exact (spec_zdigits op_spec).
Qed.
Let spec_ww_head0 : forall x, 0 < [|x|] ->
wwB/ 2 <= 2 ^ [|head0 x|] * [|x|] < wwB.
Proof.
refine (spec_ww_head0 w_0 w_0W w_compare w_head0
w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ _ _ _ _);wwauto.
exact (spec_compare op_spec).
exact (spec_zdigits op_spec).
Qed.
Let spec_ww_tail00 : forall x, [|x|] = 0 -> [|tail0 x|] = Zpos _ww_digits.
Proof.
refine (spec_ww_tail00 w_0 w_0W
w_compare w_tail0 w_add2 w_zdigits _ww_zdigits
w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); wwauto.
exact (spec_compare op_spec).
exact (spec_tail00 op_spec).
exact (spec_zdigits op_spec).
Qed.
Let spec_ww_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * 2 ^ [|tail0 x|].
Proof.
refine (spec_ww_tail0 (w_digits := w_digits) w_0 w_0W w_compare w_tail0
w_add2 w_zdigits _ww_zdigits w_to_Z _ _ _ _ _ _ _);wwauto.
exact (spec_compare op_spec).
exact (spec_zdigits op_spec).
Qed.
Lemma spec_ww_add_mul_div : forall x y p,
[|p|] <= Zpos _ww_digits ->
[| add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos _ww_digits) - [|p|]))) mod wwB.
Proof.
refine (@spec_ww_add_mul_div w w_0 w_WW w_W0 w_0W compare w_add_mul_div
sub w_digits w_zdigits low w_to_Z
_ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_zdigits op_spec).
Qed.
Let spec_ww_div_gt : forall a b,
[|a|] > [|b|] -> 0 < [|b|] ->
let (q,r) := div_gt a b in
[|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
Proof.
refine
(@spec_ww_div_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt
w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
).
exact (spec_0 op_spec).
exact (spec_to_Z op_spec).
wwauto.
wwauto.
exact (spec_compare op_spec).
exact (spec_eq0 op_spec).
exact (spec_opp_c op_spec).
exact (spec_opp op_spec).
exact (spec_opp_carry op_spec).
exact (spec_sub_c op_spec).
exact (spec_sub op_spec).
exact (spec_sub_carry op_spec).
exact (spec_div_gt op_spec).
exact (spec_add_mul_div op_spec).
exact (spec_head0 op_spec).
exact (spec_div21 op_spec).
exact spec_w_div32.
exact (spec_zdigits op_spec).
exact spec_ww_digits.
exact spec_ww_1.
exact spec_ww_add_mul_div.
Qed.
Let spec_ww_div : forall a b, 0 < [|b|] ->
let (q,r) := div a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
refine (spec_ww_div w_digits ww_1 compare div_gt w_to_Z _ _ _ _);auto.
Qed.
Let spec_ww_mod_gt : forall a b,
[|a|] > [|b|] -> 0 < [|b|] ->
[|mod_gt a b|] = [|a|] mod [|b|].
Proof.
refine (@spec_ww_mod_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt w_mod_gt
w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div
w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_compare op_spec).
exact (spec_div_gt op_spec).
exact (spec_div21 op_spec).
exact (spec_zdigits op_spec).
exact spec_ww_add_mul_div.
Qed.
Let spec_ww_mod : forall a b, 0 < [|b|] -> [|mod_ a b|] = [|a|] mod [|b|].
Proof.
refine (spec_ww_mod w_digits W0 compare mod_gt w_to_Z _ _ _);auto.
Qed.
Let spec_ww_gcd_gt : forall a b, [|a|] > [|b|] ->
Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
Proof.
refine (@spec_ww_gcd_gt w w_digits W0 w_to_Z _
w_0 w_0 w_eq0 w_gcd_gt _ww_digits
_ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_compare op_spec).
exact (spec_div21 op_spec).
exact (spec_zdigits op_spec).
exact spec_ww_add_mul_div.
refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
_ _);auto.
exact (spec_compare op_spec).
Qed.
Let spec_ww_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
Proof.
refine (@spec_ww_gcd w w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt
_ww_digits _ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_compare op_spec).
exact (spec_div21 op_spec).
exact (spec_zdigits op_spec).
exact spec_ww_add_mul_div.
refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
_ _);auto.
exact (spec_compare op_spec).
Qed.
Let spec_ww_is_even : forall x,
match is_even x with
true => [|x|] mod 2 = 0
| false => [|x|] mod 2 = 1
end.
Proof.
refine (@spec_ww_is_even w w_is_even w_0 w_1 w_Bm1 w_digits _ _ _ _ _); auto.
exact (spec_is_even op_spec).
Qed.
Let spec_ww_sqrt2 : forall x y,
wwB/ 4 <= [|x|] ->
let (s,r) := sqrt2 x y in
[[WW x y]] = [|s|] ^ 2 + [+|r|] /\
[+|r|] <= 2 * [|s|].
Proof.
intros x y H.
refine (@spec_ww_sqrt2 w w_is_even w_compare w_0 w_1 w_Bm1
w_0W w_sub w_square_c w_div21 w_add_mul_div w_digits w_zdigits
_ww_zdigits
w_add_c w_sqrt2 w_pred pred_c pred add_c add sub_c add_mul_div
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
exact (spec_zdigits op_spec).
exact (spec_more_than_1_digit op_spec).
exact (spec_is_even op_spec).
exact (spec_compare op_spec).
exact (spec_div21 op_spec).
exact (spec_ww_add_mul_div).
exact (spec_sqrt2 op_spec).
Qed.
Let spec_ww_sqrt : forall x,
[|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
Proof.
refine (@spec_ww_sqrt w w_is_even w_0 w_1 w_Bm1
w_sub w_add_mul_div w_digits w_zdigits _ww_zdigits
w_sqrt2 pred add_mul_div head0 compare
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
exact (spec_zdigits op_spec).
exact (spec_more_than_1_digit op_spec).
exact (spec_is_even op_spec).
exact (spec_ww_add_mul_div).
exact (spec_sqrt2 op_spec).
Qed.
Lemma mk_znz2_spec : znz_spec mk_zn2z_op.
Proof.
apply mk_znz_spec;auto.
exact spec_ww_add_mul_div.
refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_pos_mod op_spec).
exact (spec_zdigits op_spec).
unfold w_to_Z, w_zdigits.
rewrite (spec_zdigits op_spec).
rewrite <- Zpos_xO; exact spec_ww_digits.
Qed.
Lemma mk_znz2_karatsuba_spec : znz_spec mk_zn2z_op_karatsuba.
Proof.
apply mk_znz_spec;auto.
exact spec_ww_add_mul_div.
refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
_ _ _ _ _ _ _ _ _ _ _ _);wwauto.
exact (spec_pos_mod op_spec).
exact (spec_zdigits op_spec).
unfold w_to_Z, w_zdigits.
rewrite (spec_zdigits op_spec).
rewrite <- Zpos_xO; exact spec_ww_digits.
Qed.
End Z_2nZ.
Section MulAdd.
Variable w: Type.
Variable op: znz_op w.
Variable sop: znz_spec op.
Definition mul_add:= w_mul_add (znz_0 op) (znz_succ op) (znz_add_c op) (znz_mul_c op).
Notation "[| x |]" := (znz_to_Z op x) (at level 0, x at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z (base (znz_digits op)) (znz_to_Z op) x) (at level 0, x at level 99).
Lemma spec_mul_add: forall x y z,
let (zh, zl) := mul_add x y z in
[||WW zh zl||] = [|x|] * [|y|] + [|z|].
Proof.
intros x y z.
refine (spec_w_mul_add _ _ _ _ _ _ _ _ _ _ _ _ x y z); auto.
exact (spec_0 sop).
exact (spec_to_Z sop).
exact (spec_succ sop).
exact (spec_add_c sop).
exact (spec_mul_c sop).
Qed.
End MulAdd.
(** Modular versions of DoubleCyclic *)
Module DoubleCyclic (C:CyclicType) <: CyclicType.
Definition w := zn2z C.w.
Definition w_op := mk_zn2z_op C.w_op.
Definition w_spec := mk_znz2_spec C.w_spec.
End DoubleCyclic.
Module DoubleCyclicKaratsuba (C:CyclicType) <: CyclicType.
Definition w := zn2z C.w.
Definition w_op := mk_zn2z_op_karatsuba C.w_op.
Definition w_spec := mk_znz2_karatsuba_spec C.w_spec.
End DoubleCyclicKaratsuba.
|