summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/Abstract/NZCyclic.v
blob: 3636ebec81b538d887ba3db2af153054bbd986ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id$ i*)

Require Export NZAxioms.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import CyclicAxioms.

(** * From [CyclicType] to [NZAxiomsSig] *)

(** A [Z/nZ] representation given by a module type [CyclicType]
    implements [NZAxiomsSig], e.g. the common properties between
    N and Z with no ordering. Notice that the [n] in [Z/nZ] is
    a power of 2.
*)

Module NZCyclicAxiomsMod (Import Cyclic : CyclicType) <: NZAxiomsSig.

Local Open Scope Z_scope.

Definition t := w.

Definition NZ_to_Z : t -> Z := znz_to_Z w_op.
Definition Z_to_NZ : Z -> t := znz_of_Z w_op.
Local Notation wB := (base w_op.(znz_digits)).

Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).

Definition eq (n m : t) := [| n |] = [| m |].
Definition zero := w_op.(znz_0).
Definition succ := w_op.(znz_succ).
Definition pred := w_op.(znz_pred).
Definition add := w_op.(znz_add).
Definition sub := w_op.(znz_sub).
Definition mul := w_op.(znz_mul).

Local Infix "=="  := eq (at level 70).
Local Notation "0" := zero.
Local Notation S := succ.
Local Notation P := pred.
Local Infix "+" := add.
Local Infix "-" := sub.
Local Infix "*" := mul.

Hint Rewrite w_spec.(spec_0) w_spec.(spec_succ) w_spec.(spec_pred)
 w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_sub) : w.
Ltac wsimpl :=
 unfold eq, zero, succ, pred, add, sub, mul; autorewrite with w.
Ltac wcongruence := repeat red; intros; wsimpl; congruence.

Instance eq_equiv : Equivalence eq.
Proof.
unfold eq. firstorder.
Qed.

Instance succ_wd : Proper (eq ==> eq) succ.
Proof.
wcongruence.
Qed.

Instance pred_wd : Proper (eq ==> eq) pred.
Proof.
wcongruence.
Qed.

Instance add_wd : Proper (eq ==> eq ==> eq) add.
Proof.
wcongruence.
Qed.

Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
Proof.
wcongruence.
Qed.

Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
Proof.
wcongruence.
Qed.

Theorem gt_wB_1 : 1 < wB.
Proof.
unfold base. apply Zpower_gt_1; unfold Zlt; auto with zarith.
Qed.

Theorem gt_wB_0 : 0 < wB.
Proof.
pose proof gt_wB_1; auto with zarith.
Qed.

Lemma succ_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB.
Proof.
intro n.
pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zplus_mod.
reflexivity.
now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
Qed.

Lemma pred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB.
Proof.
intro n.
pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zminus_mod.
reflexivity.
now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
Qed.

Lemma NZ_to_Z_mod : forall n, [| n |] mod wB = [| n |].
Proof.
intro n; rewrite Zmod_small. reflexivity. apply w_spec.(spec_to_Z).
Qed.

Theorem pred_succ : forall n, P (S n) == n.
Proof.
intro n. wsimpl.
rewrite <- pred_mod_wB.
replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod.
Qed.

Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0.
Proof.
unfold NZ_to_Z, Z_to_NZ. wsimpl.
rewrite znz_of_Z_correct; auto.
exact w_spec. split; [auto with zarith |apply gt_wB_0].
Qed.

Section Induction.

Variable A : t -> Prop.
Hypothesis A_wd : Proper (eq ==> iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (S n).
 (* Below, we use only -> direction *)

Let B (n : Z) := A (Z_to_NZ n).

Lemma B0 : B 0.
Proof.
unfold B. now rewrite Z_to_NZ_0.
Qed.

Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1).
Proof.
intros n H1 H2 H3.
unfold B in *. apply -> AS in H3.
setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)). assumption.
wsimpl.
unfold NZ_to_Z, Z_to_NZ.
do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]).
symmetry; apply Zmod_small; auto with zarith.
Qed.

Lemma B_holds : forall n : Z, 0 <= n < wB -> B n.
Proof.
intros n [H1 H2].
apply Zbounded_induction with wB.
apply B0. apply BS. assumption. assumption.
Qed.

Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)).
apply B_holds. apply w_spec.(spec_to_Z).
unfold eq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct.
reflexivity.
exact w_spec.
apply w_spec.(spec_to_Z).
Qed.

End Induction.

Theorem add_0_l : forall n, 0 + n == n.
Proof.
intro n. wsimpl.
rewrite Zplus_0_l. rewrite Zmod_small; [reflexivity | apply w_spec.(spec_to_Z)].
Qed.

Theorem add_succ_l : forall n m, (S n) + m == S (n + m).
Proof.
intros n m. wsimpl.
rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0.
rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l.
rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc.
Qed.

Theorem sub_0_r : forall n, n - 0 == n.
Proof.
intro n. wsimpl. rewrite Zminus_0_r. apply NZ_to_Z_mod.
Qed.

Theorem sub_succ_r : forall n m, n - (S m) == P (n - m).
Proof.
intros n m. wsimpl. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l.
now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z
     by auto with zarith.
Qed.

Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
intro n. wsimpl. now rewrite Zmult_0_l.
Qed.

Theorem mul_succ_l : forall n m, (S n) * m == n * m + m.
Proof.
intros n m. wsimpl. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
now rewrite Zmult_plus_distr_l, Zmult_1_l.
Qed.

End NZCyclicAxiomsMod.