1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import BinPos.
(**********************************************************************)
(** Properties of the injection from binary positive numbers to Peano
natural numbers *)
(** Original development by Pierre Crégut, CNET, Lannion, France *)
Require Import Le.
Require Import Lt.
Require Import Gt.
Require Import Plus.
Require Import Mult.
Require Import Minus.
Require Import Compare_dec.
Local Open Scope positive_scope.
Local Open Scope nat_scope.
(** [nat_of_P] is a morphism for addition *)
Lemma Pmult_nat_succ_morphism :
forall (p:positive) (n:nat), Pmult_nat (Psucc p) n = n + Pmult_nat p n.
Proof.
intro x; induction x as [p IHp| p IHp| ]; simpl in |- *; auto; intro m;
rewrite IHp; rewrite plus_assoc; trivial.
Qed.
Lemma nat_of_P_succ_morphism :
forall p:positive, nat_of_P (Psucc p) = S (nat_of_P p).
Proof.
intro; change (S (nat_of_P p)) with (1 + nat_of_P p) in |- *;
unfold nat_of_P in |- *; apply Pmult_nat_succ_morphism.
Qed.
Theorem Pmult_nat_plus_carry_morphism :
forall (p q:positive) (n:nat),
Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
intro m;
[ rewrite IHp; rewrite plus_assoc; trivial with arith
| rewrite IHp; rewrite plus_assoc; trivial with arith
| rewrite Pmult_nat_succ_morphism; rewrite plus_assoc; trivial with arith
| rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ].
Qed.
Theorem nat_of_P_plus_carry_morphism :
forall p q:positive, nat_of_P (Pplus_carry p q) = S (nat_of_P (p + q)).
Proof.
intros; unfold nat_of_P in |- *; rewrite Pmult_nat_plus_carry_morphism;
simpl in |- *; trivial with arith.
Qed.
Theorem Pmult_nat_l_plus_morphism :
forall (p q:positive) (n:nat),
Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto with arith;
[ intros m; rewrite Pmult_nat_plus_carry_morphism; rewrite IHp;
rewrite plus_assoc_reverse; rewrite plus_assoc_reverse;
rewrite (plus_permute m (Pmult_nat p (m + m)));
trivial with arith
| intros m; rewrite IHp; apply plus_assoc
| intros m; rewrite Pmult_nat_succ_morphism;
rewrite (plus_comm (m + Pmult_nat p (m + m)));
apply plus_assoc_reverse
| intros m; rewrite IHp; apply plus_permute
| intros m; rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ].
Qed.
Theorem nat_of_P_plus_morphism :
forall p q:positive, nat_of_P (p + q) = nat_of_P p + nat_of_P q.
Proof.
intros x y; exact (Pmult_nat_l_plus_morphism x y 1).
Qed.
(** [Pmult_nat] is a morphism for addition *)
Lemma Pmult_nat_r_plus_morphism :
forall (p:positive) (n:nat),
Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Proof.
intro y; induction y as [p H| p H| ]; intro m;
[ simpl in |- *; rewrite H; rewrite plus_assoc_reverse;
rewrite (plus_permute m (Pmult_nat p (m + m)));
rewrite plus_assoc_reverse; auto with arith
| simpl in |- *; rewrite H; auto with arith
| simpl in |- *; trivial with arith ].
Qed.
Lemma ZL6 : forall p:positive, Pmult_nat p 2 = nat_of_P p + nat_of_P p.
Proof.
intro p; change 2 with (1 + 1) in |- *; rewrite Pmult_nat_r_plus_morphism;
trivial.
Qed.
(** [nat_of_P] is a morphism for multiplication *)
Theorem nat_of_P_mult_morphism :
forall p q:positive, nat_of_P (p * q) = nat_of_P p * nat_of_P q.
Proof.
intros x y; induction x as [x' H| x' H| ];
[ change (xI x' * y)%positive with (y + xO (x' * y))%positive in |- *;
rewrite nat_of_P_plus_morphism; unfold nat_of_P at 2 3 in |- *;
simpl in |- *; do 2 rewrite ZL6; rewrite H; rewrite mult_plus_distr_r;
reflexivity
| unfold nat_of_P at 1 2 in |- *; simpl in |- *; do 2 rewrite ZL6; rewrite H;
rewrite mult_plus_distr_r; reflexivity
| simpl in |- *; rewrite <- plus_n_O; reflexivity ].
Qed.
(** [nat_of_P] maps to the strictly positive subset of [nat] *)
Lemma ZL4 : forall p:positive, exists h : nat, nat_of_P p = S h.
Proof.
intro y; induction y as [p H| p H| ];
[ destruct H as [x H1]; exists (S x + S x); unfold nat_of_P in |- *;
simpl in |- *; change 2 with (1 + 1) in |- *;
rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1;
rewrite H1; auto with arith
| destruct H as [x H2]; exists (x + S x); unfold nat_of_P in |- *;
simpl in |- *; change 2 with (1 + 1) in |- *;
rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2;
rewrite H2; auto with arith
| exists 0; auto with arith ].
Qed.
(** Extra lemmas on [lt] on Peano natural numbers *)
Lemma ZL7 : forall n m:nat, n < m -> n + n < m + m.
Proof.
intros m n H; apply lt_trans with (m := m + n);
[ apply plus_lt_compat_l with (1 := H)
| rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ].
Qed.
Lemma ZL8 : forall n m:nat, n < m -> S (n + n) < m + m.
Proof.
intros m n H; apply le_lt_trans with (m := m + n);
[ change (m + m < m + n) in |- *; apply plus_lt_compat_l with (1 := H)
| rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ].
Qed.
(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
from [compare] on [positive])
Part 1: [lt] on [positive] is finer than [lt] on [nat]
*)
Lemma nat_of_P_lt_Lt_compare_morphism :
forall p q:positive, (p ?= q) Eq = Lt -> nat_of_P p < nat_of_P q.
Proof.
intro x; induction x as [p H| p H| ]; intro y; destruct y as [q| q| ];
intro H2;
[ unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; do 2 rewrite ZL6;
apply ZL7; apply H; simpl in H2; assumption
| unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; apply ZL8;
apply H; simpl in H2; apply Pcompare_Gt_Lt; assumption
| simpl in |- *; discriminate H2
| simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6;
elim (Pcompare_Lt_Lt p q H2);
[ intros H3; apply lt_S; apply ZL7; apply H; apply H3
| intros E; rewrite E; apply lt_n_Sn ]
| simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6;
apply ZL7; apply H; assumption
| simpl in |- *; discriminate H2
| unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; rewrite ZL6;
elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *;
apply lt_O_Sn
| unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 q);
intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm;
apply lt_n_S; apply lt_O_Sn
| simpl in |- *; discriminate H2 ].
Qed.
(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
from [compare] on [positive])
Part 1: [gt] on [positive] is finer than [gt] on [nat]
*)
Lemma nat_of_P_gt_Gt_compare_morphism :
forall p q:positive, (p ?= q) Eq = Gt -> nat_of_P p > nat_of_P q.
Proof.
intros p q GT. unfold gt.
apply nat_of_P_lt_Lt_compare_morphism.
change ((q ?= p) (CompOpp Eq) = CompOpp Gt).
rewrite <- Pcompare_antisym, GT; auto.
Qed.
(** [nat_of_P] is a morphism for [Pcompare] and [nat_compare] *)
Lemma nat_of_P_compare_morphism : forall p q,
(p ?= q) Eq = nat_compare (nat_of_P p) (nat_of_P q).
Proof.
intros p q; symmetry.
destruct ((p ?= q) Eq) as [ | | ]_eqn.
rewrite (Pcompare_Eq_eq p q); auto.
apply <- nat_compare_eq_iff; auto.
apply -> nat_compare_lt. apply nat_of_P_lt_Lt_compare_morphism; auto.
apply -> nat_compare_gt. apply nat_of_P_gt_Gt_compare_morphism; auto.
Qed.
(** [nat_of_P] is hence injective. *)
Lemma nat_of_P_inj : forall p q:positive, nat_of_P p = nat_of_P q -> p = q.
Proof.
intros.
apply Pcompare_Eq_eq.
rewrite nat_of_P_compare_morphism.
apply <- nat_compare_eq_iff; auto.
Qed.
(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
from [compare] on [positive])
Part 2: [lt] on [nat] is finer than [lt] on [positive]
*)
Lemma nat_of_P_lt_Lt_compare_complement_morphism :
forall p q:positive, nat_of_P p < nat_of_P q -> (p ?= q) Eq = Lt.
Proof.
intros. rewrite nat_of_P_compare_morphism.
apply -> nat_compare_lt; auto.
Qed.
(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
from [compare] on [positive])
Part 2: [gt] on [nat] is finer than [gt] on [positive]
*)
Lemma nat_of_P_gt_Gt_compare_complement_morphism :
forall p q:positive, nat_of_P p > nat_of_P q -> (p ?= q) Eq = Gt.
Proof.
intros. rewrite nat_of_P_compare_morphism.
apply -> nat_compare_gt; auto.
Qed.
(** [nat_of_P] is strictly positive *)
Lemma le_Pmult_nat : forall (p:positive) (n:nat), n <= Pmult_nat p n.
induction p; simpl in |- *; auto with arith.
intro m; apply le_trans with (m + m); auto with arith.
Qed.
Lemma lt_O_nat_of_P : forall p:positive, 0 < nat_of_P p.
intro; unfold nat_of_P in |- *; apply lt_le_trans with 1; auto with arith.
apply le_Pmult_nat.
Qed.
(** Pmult_nat permutes with multiplication *)
Lemma Pmult_nat_mult_permute :
forall (p:positive) (n m:nat), Pmult_nat p (m * n) = m * Pmult_nat p n.
Proof.
simple induction p. intros. simpl in |- *. rewrite mult_plus_distr_l. rewrite <- (mult_plus_distr_l m n n).
rewrite (H (n + n) m). reflexivity.
intros. simpl in |- *. rewrite <- (mult_plus_distr_l m n n). apply H.
trivial.
Qed.
Lemma Pmult_nat_2_mult_2_permute :
forall p:positive, Pmult_nat p 2 = 2 * Pmult_nat p 1.
Proof.
intros. rewrite <- Pmult_nat_mult_permute. reflexivity.
Qed.
Lemma Pmult_nat_4_mult_2_permute :
forall p:positive, Pmult_nat p 4 = 2 * Pmult_nat p 2.
Proof.
intros. rewrite <- Pmult_nat_mult_permute. reflexivity.
Qed.
(** Mapping of xH, xO and xI through [nat_of_P] *)
Lemma nat_of_P_xH : nat_of_P 1 = 1.
Proof.
reflexivity.
Qed.
Lemma nat_of_P_xO : forall p:positive, nat_of_P (xO p) = 2 * nat_of_P p.
Proof.
intros.
change 2 with (nat_of_P 2).
rewrite <- nat_of_P_mult_morphism.
f_equal.
Qed.
Lemma nat_of_P_xI : forall p:positive, nat_of_P (xI p) = S (2 * nat_of_P p).
Proof.
intros.
change 2 with (nat_of_P 2).
rewrite <- nat_of_P_mult_morphism, <- nat_of_P_succ_morphism.
f_equal.
Qed.
(**********************************************************************)
(** Properties of the shifted injection from Peano natural numbers to
binary positive numbers *)
(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
Theorem nat_of_P_o_P_of_succ_nat_eq_succ :
forall n:nat, nat_of_P (P_of_succ_nat n) = S n.
Proof.
induction n as [|n H].
reflexivity.
simpl; rewrite nat_of_P_succ_morphism, H; auto.
Qed.
(** Miscellaneous lemmas on [P_of_succ_nat] *)
Lemma ZL3 :
forall n:nat, Psucc (P_of_succ_nat (n + n)) = xO (P_of_succ_nat n).
Proof.
induction n as [| n H]; simpl;
[ auto with arith
| rewrite plus_comm; simpl; rewrite H;
rewrite xO_succ_permute; auto with arith ].
Qed.
Lemma ZL5 : forall n:nat, P_of_succ_nat (S n + S n) = xI (P_of_succ_nat n).
Proof.
induction n as [| n H]; simpl;
[ auto with arith
| rewrite <- plus_n_Sm; simpl; simpl in H; rewrite H;
auto with arith ].
Qed.
(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)
Theorem P_of_succ_nat_o_nat_of_P_eq_succ :
forall p:positive, P_of_succ_nat (nat_of_P p) = Psucc p.
Proof.
intros.
apply nat_of_P_inj.
rewrite nat_of_P_o_P_of_succ_nat_eq_succ, nat_of_P_succ_morphism; auto.
Qed.
(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
on [positive] *)
Theorem pred_o_P_of_succ_nat_o_nat_of_P_eq_id :
forall p:positive, Ppred (P_of_succ_nat (nat_of_P p)) = p.
Proof.
intros; rewrite P_of_succ_nat_o_nat_of_P_eq_succ, Ppred_succ; auto.
Qed.
(**********************************************************************)
(** Extra properties of the injection from binary positive numbers to Peano
natural numbers *)
(** [nat_of_P] is a morphism for subtraction on positive numbers *)
Theorem nat_of_P_minus_morphism :
forall p q:positive,
(p ?= q) Eq = Gt -> nat_of_P (p - q) = nat_of_P p - nat_of_P q.
Proof.
intros x y H; apply plus_reg_l with (nat_of_P y); rewrite le_plus_minus_r;
[ rewrite <- nat_of_P_plus_morphism; rewrite Pplus_minus; auto with arith
| apply lt_le_weak; exact (nat_of_P_gt_Gt_compare_morphism x y H) ].
Qed.
Lemma ZL16 : forall p q:positive, nat_of_P p - nat_of_P q < nat_of_P p.
Proof.
intros p q; elim (ZL4 p); elim (ZL4 q); intros h H1 i H2; rewrite H1;
rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S;
apply le_minus.
Qed.
Lemma ZL17 : forall p q:positive, nat_of_P p < nat_of_P (p + q).
Proof.
intros p q; rewrite nat_of_P_plus_morphism; unfold lt in |- *; elim (ZL4 q);
intros k H; rewrite H; rewrite plus_comm; simpl in |- *;
apply le_n_S; apply le_plus_r.
Qed.
(** Comparison and subtraction *)
Lemma Pcompare_minus_r :
forall p q r:positive,
(q ?= p) Eq = Lt ->
(r ?= p) Eq = Gt ->
(r ?= q) Eq = Gt -> (r - p ?= r - q) Eq = Lt.
Proof.
intros; apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ apply plus_lt_reg_l with (p := nat_of_P q); rewrite le_plus_minus_r;
[ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p);
rewrite plus_assoc; rewrite le_plus_minus_r;
[ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l;
apply nat_of_P_lt_Lt_compare_morphism;
assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
assumption ]
| assumption ]
| assumption ].
Qed.
Lemma Pcompare_minus_l :
forall p q r:positive,
(q ?= p) Eq = Lt ->
(p ?= r) Eq = Gt ->
(q ?= r) Eq = Gt -> (q - r ?= p - r) Eq = Lt.
Proof.
intros p q z; intros; apply nat_of_P_lt_Lt_compare_complement_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z);
rewrite le_plus_minus_r;
[ rewrite le_plus_minus_r;
[ apply nat_of_P_lt_Lt_compare_morphism; assumption
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
apply ZC1; assumption ]
| apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
assumption ]
| assumption ]
| assumption ].
Qed.
(** Distributivity of multiplication over subtraction *)
Theorem Pmult_minus_distr_l :
forall p q r:positive,
(q ?= r) Eq = Gt ->
(p * (q - r) = p * q - p * r)%positive.
Proof.
intros x y z H; apply nat_of_P_inj; rewrite nat_of_P_mult_morphism;
rewrite nat_of_P_minus_morphism;
[ rewrite nat_of_P_minus_morphism;
[ do 2 rewrite nat_of_P_mult_morphism;
do 3 rewrite (mult_comm (nat_of_P x)); apply mult_minus_distr_r
| apply nat_of_P_gt_Gt_compare_complement_morphism;
do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *;
elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l;
exact (nat_of_P_gt_Gt_compare_morphism y z H) ]
| assumption ].
Qed.
|