summaryrefslogtreecommitdiff
path: root/theories/NArith/NArith.v
blob: 12d3ad2fdb446a9f740d108515d9817dd0c40242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Library for binary natural numbers *)

Require Export BinNums.
Require Export BinPos.
Require Export BinNat.
Require Export Nnat.
Require Export Ndiv_def.
Require Export Nsqrt_def.
Require Export Ngcd_def.
Require Export Ndigits.
Require Export NArithRing.

(** [N] contains an [order] tactic for natural numbers *)

(** Note that [N.order] is domain-agnostic: it will not prove
    [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)

Local Open Scope N_scope.

Section TestOrder.
 Let test : forall x y, x<=y -> y<=x -> x=y.
 Proof.
 N.order.
 Qed.
End TestOrder.