summaryrefslogtreecommitdiff
path: root/theories/NArith/BinPos.v
blob: 62bd57c0be5a47ad985f6bb3ac8d76e4839cb7b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: BinPos.v 14641 2011-11-06 11:59:10Z herbelin $ i*)

Unset Boxed Definitions.

Declare ML Module "z_syntax_plugin".

(**********************************************************************)
(** Binary positive numbers *)

(** Original development by Pierre Crégut, CNET, Lannion, France *)

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

(** Declare binding key for scope positive_scope *)

Delimit Scope positive_scope with positive.

(** Automatically open scope positive_scope for type positive, xO and xI *)

Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].

(** Postfix notation for positive numbers, allowing to mimic
    the position of bits in a big-endian representation.
    For instance, we can write 1~1~0 instead of (xO (xI xH))
    for the number 6 (which is 110 in binary notation).
*)

Notation "p ~ 1" := (xI p)
 (at level 7, left associativity, format "p '~' '1'") : positive_scope.
Notation "p ~ 0" := (xO p)
 (at level 7, left associativity, format "p '~' '0'") : positive_scope.

Open Local Scope positive_scope.

(* In the current file, [xH] cannot yet be written as [1], since the
   interpretation of positive numerical constants is not available
   yet. We fix this here with an ad-hoc temporary notation. *)

Notation Local "1" := xH (at level 7).

(** Successor *)

Fixpoint Psucc (x:positive) : positive :=
  match x with
    | p~1 => (Psucc p)~0
    | p~0 => p~1
    | 1 => 1~0
  end.

(** Addition *)

Set Boxed Definitions.

Fixpoint Pplus (x y:positive) : positive :=
  match x, y with
    | p~1, q~1 => (Pplus_carry p q)~0
    | p~1, q~0 => (Pplus p q)~1
    | p~1, 1 => (Psucc p)~0
    | p~0, q~1 => (Pplus p q)~1
    | p~0, q~0 => (Pplus p q)~0
    | p~0, 1 => p~1
    | 1, q~1 => (Psucc q)~0
    | 1, q~0 => q~1
    | 1, 1 => 1~0
  end

with Pplus_carry (x y:positive) : positive :=
  match x, y with
    | p~1, q~1 => (Pplus_carry p q)~1
    | p~1, q~0 => (Pplus_carry p q)~0
    | p~1, 1 => (Psucc p)~1
    | p~0, q~1 => (Pplus_carry p q)~0
    | p~0, q~0 => (Pplus p q)~1
    | p~0, 1 => (Psucc p)~0
    | 1, q~1 => (Psucc q)~1
    | 1, q~0 => (Psucc q)~0
    | 1, 1 => 1~1
  end.

Unset Boxed Definitions.

Infix "+" := Pplus : positive_scope.

(** From binary positive numbers to Peano natural numbers *)

Fixpoint Pmult_nat (x:positive) (pow2:nat) : nat :=
  match x with
    | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat
    | p~0 => Pmult_nat p (pow2 + pow2)%nat
    | 1 => pow2
  end.

Definition nat_of_P (x:positive) := Pmult_nat x (S O).

(** From Peano natural numbers to binary positive numbers *)

Fixpoint P_of_succ_nat (n:nat) : positive :=
  match n with
    | O => 1
    | S x => Psucc (P_of_succ_nat x)
  end.

(** Operation x -> 2*x-1 *)

Fixpoint Pdouble_minus_one (x:positive) : positive :=
  match x with
    | p~1 => p~0~1
    | p~0 => (Pdouble_minus_one p)~1
    | 1 => 1
  end.

(** Predecessor *)

Definition Ppred (x:positive) :=
  match x with
    | p~1 => p~0
    | p~0 => Pdouble_minus_one p
    | 1 => 1
  end.

(** An auxiliary type for subtraction *)

Inductive positive_mask : Set :=
| IsNul : positive_mask
| IsPos : positive -> positive_mask
| IsNeg : positive_mask.

(** Operation x -> 2*x+1 *)

Definition Pdouble_plus_one_mask (x:positive_mask) :=
  match x with
    | IsNul => IsPos 1
    | IsNeg => IsNeg
    | IsPos p => IsPos p~1
  end.

(** Operation x -> 2*x *)

Definition Pdouble_mask (x:positive_mask) :=
  match x with
    | IsNul => IsNul
    | IsNeg => IsNeg
    | IsPos p => IsPos p~0
  end.

(** Operation x -> 2*x-2 *)

Definition Pdouble_minus_two (x:positive) :=
  match x with
    | p~1 => IsPos p~0~0
    | p~0 => IsPos (Pdouble_minus_one p)~0
    | 1 => IsNul
  end.

(** Subtraction of binary positive numbers into a positive numbers mask *)

Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
  match x, y with
    | p~1, q~1 => Pdouble_mask (Pminus_mask p q)
    | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q)
    | p~1, 1 => IsPos p~0
    | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
    | p~0, q~0 => Pdouble_mask (Pminus_mask p q)
    | p~0, 1 => IsPos (Pdouble_minus_one p)
    | 1, 1 => IsNul
    | 1, _ => IsNeg
  end

with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
  match x, y with
    | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
    | p~1, q~0 => Pdouble_mask (Pminus_mask p q)
    | p~1, 1 => IsPos (Pdouble_minus_one p)
    | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q)
    | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
    | p~0, 1 => Pdouble_minus_two p
    | 1, _ => IsNeg
  end.

(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)

Definition Pminus (x y:positive) :=
  match Pminus_mask x y with
    | IsPos z => z
    | _ => 1
  end.

Infix "-" := Pminus : positive_scope.

(** Multiplication on binary positive numbers *)

Fixpoint Pmult (x y:positive) : positive :=
  match x with
    | p~1 => y + (Pmult p y)~0
    | p~0 => (Pmult p y)~0
    | 1 => y
  end.

Infix "*" := Pmult : positive_scope.

(** Division by 2 rounded below but for 1 *)

Definition Pdiv2 (z:positive) :=
  match z with
    | 1 => 1
    | p~0 => p
    | p~1 => p
  end.

Infix "/" := Pdiv2 : positive_scope.

(** Comparison on binary positive numbers *)

Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
  match x, y with
    | p~1, q~1 => Pcompare p q r
    | p~1, q~0 => Pcompare p q Gt
    | p~1, 1 => Gt
    | p~0, q~1 => Pcompare p q Lt
    | p~0, q~0 => Pcompare p q r
    | p~0, 1 => Gt
    | 1, q~1 => Lt
    | 1, q~0 => Lt
    | 1, 1 => r
  end.

Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.

Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt.
Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt.
Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt.
Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt.

Infix "<=" := Ple : positive_scope.
Infix "<" := Plt : positive_scope.
Infix ">=" := Pge : positive_scope.
Infix ">" := Pgt : positive_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.


Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
 | Lt | Eq => p
 | Gt => p'
 end.

Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
 | Lt | Eq => p'
 | Gt => p
 end.

(********************************************************************)
(** Boolean equality *)

Fixpoint Peqb (x y : positive) {struct y} : bool :=
 match x, y with
 | 1, 1 => true
 | p~1, q~1 => Peqb p q
 | p~0, q~0 => Peqb p q
 | _, _ => false
 end.

(**********************************************************************)
(** Decidability of equality on binary positive numbers *)

Lemma positive_eq_dec : forall x y: positive, {x = y} + {x <> y}.
Proof.
  decide equality.
Defined.

(* begin hide *)
Corollary ZL11 : forall p:positive, p = 1 \/ p <> 1.
Proof.
  intro; edestruct positive_eq_dec; eauto.
Qed.
(* end hide *)

(**********************************************************************)
(** Properties of successor on binary positive numbers *)

(** Specification of [xI] in term of [Psucc] and [xO] *)

Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0.
Proof.
  reflexivity.
Qed.

Lemma Psucc_discr : forall p:positive, p <> Psucc p.
Proof.
  destruct p; discriminate.
Qed.

(** Successor and double *)

Lemma Psucc_o_double_minus_one_eq_xO :
  forall p:positive, Psucc (Pdouble_minus_one p) = p~0.
Proof.
  induction p; simpl; f_equal; auto.
Qed.

Lemma Pdouble_minus_one_o_succ_eq_xI :
  forall p:positive, Pdouble_minus_one (Psucc p) = p~1.
Proof.
  induction p; simpl; f_equal; auto.
Qed.

Lemma xO_succ_permute :
  forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0).
Proof.
  induction p; simpl; auto.
Qed.

Lemma double_moins_un_xO_discr :
  forall p:positive, Pdouble_minus_one p <> p~0.
Proof.
  destruct p; discriminate.
Qed.

(** Successor and predecessor *)

Lemma Psucc_not_one : forall p:positive, Psucc p <> 1.
Proof.
  destruct p; discriminate.
Qed.

Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
Proof.
  intros [[p|p| ]|[p|p| ]| ]; simpl; auto.
  f_equal; apply Pdouble_minus_one_o_succ_eq_xI.
Qed.

Lemma Psucc_pred : forall p:positive, p = 1 \/ Psucc (Ppred p) = p.
Proof.
  induction p; simpl; auto.
  right; apply Psucc_o_double_minus_one_eq_xO.
Qed.

Ltac destr_eq H := discriminate H || (try (injection H; clear H; intro H)).

(** Injectivity of successor *)

Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
Proof.
  induction p; intros [q|q| ] H; simpl in *; destr_eq H; f_equal; auto.
  elim (Psucc_not_one p); auto.
  elim (Psucc_not_one q); auto.
Qed.

(**********************************************************************)
(** Properties of addition on binary positive numbers *)

(** Specification of [Psucc] in term of [Pplus] *)

Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + 1.
Proof.
  destruct p; reflexivity.
Qed.

Lemma Pplus_one_succ_l : forall p:positive, Psucc p = 1 + p.
Proof.
  destruct p; reflexivity.
Qed.

(** Specification of [Pplus_carry] *)

Theorem Pplus_carry_spec :
  forall p q:positive, Pplus_carry p q = Psucc (p + q).
Proof.
  induction p; destruct q; simpl; f_equal; auto.
Qed.

(** Commutativity *)

Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
  induction p; destruct q; simpl; f_equal; auto.
  rewrite 2 Pplus_carry_spec; f_equal; auto.
Qed.

(** Permutation of [Pplus] and [Psucc] *)

Theorem Pplus_succ_permute_r :
  forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
  induction p; destruct q; simpl; f_equal;
   auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto.
Qed.

Theorem Pplus_succ_permute_l :
  forall p q:positive, Psucc p + q = Psucc (p + q).
Proof.
  intros p q; rewrite Pplus_comm, (Pplus_comm p);
    apply Pplus_succ_permute_r.
Qed.

Theorem Pplus_carry_pred_eq_plus :
  forall p q:positive, q <> 1 -> Pplus_carry p (Ppred q) = p + q.
Proof.
  intros p q H; rewrite Pplus_carry_spec, <- Pplus_succ_permute_r; f_equal.
  destruct (Psucc_pred q); [ elim H; assumption | assumption ].
Qed.

(** No neutral for addition on strictly positive numbers *)

Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
Proof.
  induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
   destr_eq H; apply (IHp q H).
Qed.

Lemma Pplus_carry_no_neutral :
  forall p q:positive, Pplus_carry q p <> Psucc p.
Proof.
  intros p q H; elim (Pplus_no_neutral p q).
  apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption.
Qed.

(** Simplification *)

Lemma Pplus_carry_plus :
  forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
Proof.
  intros p q r s H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
    assumption.
Qed.

Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
  intros p q r; revert p q; induction r.
  intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
    f_equal; auto using Pplus_carry_plus;
    contradict H; auto using Pplus_carry_no_neutral.
  intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
    contradict H; auto using Pplus_no_neutral.
  intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.

Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
Proof.
  intros p q r H; apply Pplus_reg_r with (r:=p).
  rewrite (Pplus_comm r), (Pplus_comm q); assumption.
Qed.

Lemma Pplus_carry_reg_r :
  forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
Proof.
  intros p q r H; apply Pplus_reg_r with (r:=r); apply Pplus_carry_plus;
    assumption.
Qed.

Lemma Pplus_carry_reg_l :
  forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
Proof.
  intros p q r H; apply Pplus_reg_r with (r:=p);
  rewrite (Pplus_comm r), (Pplus_comm q); apply Pplus_carry_plus; assumption.
Qed.

(** Addition on positive is associative *)

Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
  induction p.
  intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
    rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
     ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
  intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
    rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
     ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
  intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto.
Qed.

(** Commutation of addition with the double of a positive number *)

Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0.
Proof.
  destruct n; destruct m; simpl; auto.
Qed.

Lemma Pplus_xI_double_minus_one :
  forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q.
Proof.
  intros; change (p~1) with (p~0 + 1).
  rewrite <- Pplus_assoc, <- Pplus_one_succ_l, Psucc_o_double_minus_one_eq_xO.
  reflexivity.
Qed.

Lemma Pplus_xO_double_minus_one :
  forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
Proof.
  induction p as [p IHp| p IHp| ]; destruct q; simpl;
  rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
    ?Pplus_xI_double_minus_one; try reflexivity.
  rewrite IHp; auto.
  rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity.
Qed.

(** Misc *)

Lemma Pplus_diag : forall p:positive, p + p = p~0.
Proof.
  induction p as [p IHp| p IHp| ]; simpl;
   try rewrite ?Pplus_carry_spec, ?IHp; reflexivity.
Qed.

(**********************************************************************)
(** Peano induction and recursion on binary positive positive numbers *)
(** (a nice proof from Conor McBride, see "The view from the left")   *)

Inductive PeanoView : positive -> Type :=
| PeanoOne : PeanoView 1
| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).

Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
  match q in PeanoView x return PeanoView (x~0) with
    | PeanoOne => PeanoSucc _ PeanoOne
    | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
  end.

Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
  match q in PeanoView x return PeanoView (x~1) with
    | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
    | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
  end.

Fixpoint peanoView p : PeanoView p :=
  match p return PeanoView p with
    | 1 => PeanoOne
    | p~0 => peanoView_xO p (peanoView p)
    | p~1 => peanoView_xI p (peanoView p)
  end.

Definition PeanoView_iter (P:positive->Type)
  (a:P 1) (f:forall p, P p -> P (Psucc p)) :=
  (fix iter p (q:PeanoView p) : P p :=
    match q in PeanoView p return P p with
      | PeanoOne => a
      | PeanoSucc _ q => f _ (iter _ q)
    end).

Require Import Eqdep_dec EqdepFacts.

Theorem eq_dep_eq_positive :
  forall (P:positive->Type) (p:positive) (x y:P p),
    eq_dep positive P p x p y -> x = y.
Proof.
  apply eq_dep_eq_dec.
  decide equality.
Qed.

Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
  intros.
  induction q as [ | p q IHq ].
  apply eq_dep_eq_positive.
  cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
  destruct p0; intros; discriminate.
  trivial.
  apply eq_dep_eq_positive.
  cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
  intro. destruct p; discriminate.
  intro. unfold p0 in H. apply Psucc_inj in H.
  generalize q'. rewrite H. intro.
  rewrite (IHq q'0).
  trivial.
  trivial.
Qed.

Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
  (p:positive) :=
  PeanoView_iter P a f p (peanoView p).

Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
  (f:forall p, P p -> P (Psucc p)) (p:positive),
  Prect P a f (Psucc p) = f _ (Prect P a f p).
Proof.
  intros.
  unfold Prect.
  rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))).
  trivial.
Qed.

Theorem Prect_base : forall (P:positive->Type) (a:P 1)
  (f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a.
Proof.
  trivial.
Qed.

Definition Prec (P:positive->Set) := Prect P.

(** Peano induction *)

Definition Pind (P:positive->Prop) := Prect P.

(** Peano case analysis *)

Theorem Pcase :
  forall P:positive -> Prop,
    P 1 -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
Proof.
  intros; apply Pind; auto.
Qed.

(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)

(** One is right neutral for multiplication *)

Lemma Pmult_1_r : forall p:positive, p * 1 = p.
Proof.
  induction p; simpl; f_equal; auto.
Qed.

(** Successor and multiplication *)

Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m.
Proof.
  induction n as [n IHn | n IHn | ]; simpl; intro m.
  rewrite IHn, Pplus_assoc, Pplus_diag, <-Pplus_xO; reflexivity.
  reflexivity.
  symmetry; apply Pplus_diag.
Qed.

(** Right reduction properties for multiplication *)

Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0.
Proof.
  intros p q; induction p; simpl; do 2 (f_equal; auto).
Qed.

Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0.
Proof.
  intros p q; induction p as [p IHp|p IHp| ]; simpl; f_equal; auto.
  rewrite IHp, 2 Pplus_assoc, (Pplus_comm p); reflexivity.
Qed.

(** Commutativity of multiplication *)

Theorem Pmult_comm : forall p q:positive, p * q = q * p.
Proof.
  intros p q; induction q as [q IHq|q IHq| ]; simpl; try rewrite <- IHq;
   auto using Pmult_xI_permute_r, Pmult_xO_permute_r, Pmult_1_r.
Qed.

(** Distributivity of multiplication over addition *)

Theorem Pmult_plus_distr_l :
  forall p q r:positive, p * (q + r) = p * q + p * r.
Proof.
  intros p q r; induction p as [p IHp|p IHp| ]; simpl.
  rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
  change ((p*q+p*r)~0) with (m+n).
  rewrite 2 Pplus_assoc; f_equal.
  rewrite <- 2 Pplus_assoc; f_equal.
  apply Pplus_comm.
  f_equal; auto.
  reflexivity.
Qed.

Theorem Pmult_plus_distr_r :
  forall p q r:positive, (p + q) * r = p * r + q * r.
Proof.
  intros p q r; do 3 rewrite Pmult_comm with (q:=r); apply Pmult_plus_distr_l.
Qed.

(** Associativity of multiplication *)

Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
Proof.
  induction p as [p IHp| p IHp | ]; simpl; intros q r.
  rewrite IHp; rewrite Pmult_plus_distr_r; reflexivity.
  rewrite IHp; reflexivity.
  reflexivity.
Qed.

(** Parity properties of multiplication *)

Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r.
Proof.
  intros p q r; induction r; try discriminate.
  rewrite 2 Pmult_xO_permute_r; intro H; destr_eq H; auto.
Qed.

Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q.
Proof.
  intros p q; induction q; try discriminate.
  rewrite Pmult_xO_permute_r; injection; assumption.
Qed.

(** Simplification properties of multiplication *)

Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
  induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
    reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
  apply IHp with (r~0); simpl in *;
    rewrite 2 Pmult_xO_permute_r; apply Pplus_reg_l with (1:=H).
  apply Pmult_xI_mult_xO_discr with (1:=H).
  simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H).
  symmetry in H; apply Pmult_xI_mult_xO_discr with (1:=H).
  apply IHp with (r~0); simpl; rewrite 2 Pmult_xO_permute_r; assumption.
  apply Pmult_xO_discr with (1:= H).
  simpl in H; symmetry in H; rewrite Pplus_comm in H;
    apply Pplus_no_neutral with (1:=H).
  symmetry in H; apply Pmult_xO_discr with (1:=H).
Qed.

Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
Proof.
  intros p q r H; apply Pmult_reg_r with (r:=r).
  rewrite (Pmult_comm p), (Pmult_comm q); assumption.
Qed.

(** Inversion of multiplication *)

Lemma Pmult_1_inversion_l : forall p q:positive, p * q = 1 -> p = 1.
Proof.
  intros [p|p| ] [q|q| ] H; destr_eq H; auto.
Qed.

(*********************************************************************)
(** Properties of boolean equality *)

Theorem Peqb_refl : forall x:positive, Peqb x x = true.
Proof.
 induction x; auto.
Qed.

Theorem Peqb_true_eq : forall x y:positive, Peqb x y = true -> x=y.
Proof.
 induction x; destruct y; simpl; intros; try discriminate.
 f_equal; auto.
 f_equal; auto.
 reflexivity.
Qed.

Theorem Peqb_eq : forall x y : positive, Peqb x y = true <-> x=y.
Proof.
 split. apply Peqb_true_eq.
 intros; subst; apply Peqb_refl.
Qed.


(**********************************************************************)
(** Properties of comparison on binary positive numbers *)

Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
  induction p; auto.
Qed.

(* A generalization of Pcompare_refl *)

Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r.
  induction p; auto.
Qed.

Theorem Pcompare_not_Eq :
  forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
Proof.
  induction p as [p IHp| p IHp| ]; intros [q| q| ]; split; simpl; auto;
    discriminate || (elim (IHp q); auto).
Qed.

Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
  induction p; intros [q| q| ] H; simpl in *; auto;
   try discriminate H; try (f_equal; auto; fail).
  destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto.
  destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto.
Qed.

Lemma Pcompare_eq_iff : forall p q:positive, (p ?= q) Eq = Eq <-> p = q.
Proof.
  split.
  apply Pcompare_Eq_eq.
  intros; subst; apply Pcompare_refl.
Qed.

Lemma Pcompare_Gt_Lt :
  forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
Proof.
  induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.

Lemma Pcompare_eq_Lt :
  forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt.
Proof.
  intros p q; split; [| apply Pcompare_Gt_Lt].
  revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.

Lemma Pcompare_Lt_Gt :
  forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
Proof.
  induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.

Lemma Pcompare_eq_Gt :
  forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt.
Proof.
  intros p q; split; [| apply Pcompare_Lt_Gt].
  revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.

Lemma Pcompare_Lt_Lt :
  forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
Proof.
  induction p as [p IHp| p IHp| ]; intros [q|q| ] H; simpl in *; auto;
   destruct (IHp q H); subst; auto.
Qed.

Lemma Pcompare_Lt_eq_Lt :
  forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q.
Proof.
  intros p q; split; [apply Pcompare_Lt_Lt |].
  intros [H|H]; [|subst; apply Pcompare_refl_id].
  revert q H; induction p; intros [q|q| ] H; simpl in *;
  auto; discriminate.
Qed.

Lemma Pcompare_Gt_Gt :
  forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
Proof.
  induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
    destruct (IHp q H); subst; auto.
Qed.

Lemma Pcompare_Gt_eq_Gt :
  forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q.
Proof.
  intros p q; split; [apply Pcompare_Gt_Gt |].
  intros [H|H]; [|subst; apply Pcompare_refl_id].
  revert q H; induction p; intros [q|q| ] H; simpl in *;
  auto; discriminate.
Qed.

Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
  destruct r; auto.
Qed.

Ltac ElimPcompare c1 c2 :=
  elim (Dcompare ((c1 ?= c2) Eq));
    [ idtac | let x := fresh "H" in (intro x; case x; clear x) ].

Lemma Pcompare_antisym :
  forall (p q:positive) (r:comparison),
    CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
  induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
   rewrite IHp; auto.
Qed.

Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
Proof.
  intros p q H; change Eq with (CompOpp Eq).
  rewrite <- Pcompare_antisym, H; reflexivity.
Qed.

Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
Proof.
  intros p q H; change Eq with (CompOpp Eq).
  rewrite <- Pcompare_antisym, H; reflexivity.
Qed.

Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
Proof.
  intros p q H; change Eq with (CompOpp Eq).
  rewrite <- Pcompare_antisym, H; reflexivity.
Qed.

Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
Proof.
  intros; change Eq at 1 with (CompOpp Eq).
  symmetry; apply Pcompare_antisym.
Qed.

Lemma Pcompare_spec : forall p q, CompSpec eq Plt p q ((p ?= q) Eq).
Proof.
  intros. destruct ((p ?= q) Eq) as [ ]_eqn; constructor.
  apply Pcompare_Eq_eq; auto.
  auto.
  apply ZC1; auto.
Qed.


(** Comparison and the successor *)

Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt.
Proof.
  induction p; simpl in *;
    [ elim (Pcompare_eq_Lt p (Psucc p)); auto |
      apply Pcompare_refl_id | reflexivity].
Qed.

Theorem Pcompare_p_Sq : forall p q : positive,
  (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q.
Proof.
  intros p q; split.
  (* -> *)
  revert p q; induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *;
   try (left; reflexivity); try (right; reflexivity).
  destruct (IHp q (Pcompare_Gt_Lt _ _ H)); subst; auto.
  destruct (Pcompare_eq_Lt p q); auto.
  destruct p; discriminate.
  left; destruct (IHp q H);
   [ elim (Pcompare_Lt_eq_Lt p q); auto | subst; apply Pcompare_refl_id].
  destruct (Pcompare_Lt_Lt p q H); subst; auto.
  destruct p; discriminate.
  (* <- *)
  intros [H|H]; [|subst; apply Pcompare_p_Sp].
  revert q H; induction p; intros [q|q| ] H; simpl in *;
   auto; try discriminate.
  destruct (Pcompare_eq_Lt p (Psucc q)); auto.
  apply Pcompare_Gt_Lt; auto.
  destruct (Pcompare_Lt_Lt p q H); subst; auto using Pcompare_p_Sp.
  destruct (Pcompare_Lt_eq_Lt p q); auto.
Qed.

(** 1 is the least positive number *)

Lemma Pcompare_1 : forall p, ~ (p ?= 1) Eq = Lt.
Proof.
  destruct p; discriminate.
Qed.

(** Properties of the strict order on positive numbers *)

Lemma Plt_1 : forall p, ~ p < 1.
Proof.
 exact Pcompare_1.
Qed.

Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m.
Proof.
  unfold Plt; intros n m H; apply <- Pcompare_p_Sq; auto.
Qed.

Lemma Plt_irrefl : forall p : positive, ~ p < p.
Proof.
  unfold Plt; intro p; rewrite Pcompare_refl; discriminate.
Qed.

Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p.
Proof.
  intros n m p; induction p using Pind; intros H H0.
  elim (Plt_1 _ H0).
  apply Plt_lt_succ.
  destruct (Pcompare_p_Sq m p) as (H',_); destruct (H' H0); subst; auto.
Qed.

Theorem Plt_ind : forall (A : positive -> Prop) (n : positive),
  A (Psucc n) ->
    (forall m : positive, n < m -> A m -> A (Psucc m)) ->
      forall m : positive, n < m -> A m.
Proof.
  intros A n AB AS m. induction m using Pind; intros H.
  elim (Plt_1 _ H).
  destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto.
Qed.

Lemma Ple_lteq : forall p q, p <= q <-> p < q \/ p = q.
Proof.
  unfold Ple, Plt. intros.
  generalize (Pcompare_eq_iff p q).
  destruct ((p ?= q) Eq); intuition; discriminate.
Qed.


(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)

Lemma Ppred_minus : forall p, Ppred p = Pminus p 1.
Proof.
  destruct p; auto.
Qed.

Definition Ppred_mask (p : positive_mask) :=
match p with
| IsPos 1 => IsNul
| IsPos q => IsPos (Ppred q)
| IsNul => IsNeg
| IsNeg => IsNeg
end.

Lemma Pminus_mask_succ_r :
  forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q.
Proof.
  induction p ; destruct q; simpl; f_equal; auto; destruct p; auto.
Qed.

Theorem Pminus_mask_carry_spec :
  forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q).
Proof.
  induction p as [p IHp|p IHp| ]; destruct q; simpl;
   try reflexivity; try rewrite IHp;
   destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto.
Qed.

Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q).
Proof.
  intros p q; unfold Pminus;
  rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
  destruct (Pminus_mask p q) as [|[r|r| ]|]; auto.
Qed.

Lemma double_eq_zero_inversion :
  forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
Proof.
  destruct p; simpl; intros; trivial; discriminate.
Qed.

Lemma double_plus_one_zero_discr :
  forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
Proof.
  destruct p; discriminate.
Qed.

Lemma double_plus_one_eq_one_inversion :
  forall p:positive_mask, Pdouble_plus_one_mask p = IsPos 1 -> p = IsNul.
Proof.
  destruct p; simpl; intros; trivial; discriminate.
Qed.

Lemma double_eq_one_discr :
  forall p:positive_mask, Pdouble_mask p <> IsPos 1.
Proof.
  destruct p; discriminate.
Qed.

Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
Proof.
  induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
Qed.

Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg.
Proof.
  induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
Qed.

Lemma Pminus_mask_IsNeg : forall p q:positive,
 Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg.
Proof.
  induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
   try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
   specialize IHp with q.
  destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
  destruct (Pminus_mask p q); simpl; auto; try discriminate.
  destruct (Pminus_mask_carry p q); simpl; auto; try discriminate.
  destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
Qed.

Lemma ZL10 :
  forall p q:positive,
    Pminus_mask p q = IsPos 1 -> Pminus_mask_carry p q = IsNul.
Proof.
  induction p; intros [q|q| ] H; simpl in *; try discriminate.
  elim (double_eq_one_discr _ H).
  rewrite (double_plus_one_eq_one_inversion _ H); auto.
  rewrite (double_plus_one_eq_one_inversion _ H); auto.
  elim (double_eq_one_discr _ H).
  destruct p; simpl; auto; discriminate.
Qed.

(** Properties of subtraction valid only for x>y *)

Lemma Pminus_mask_Gt :
  forall p q:positive,
    (p ?= q) Eq = Gt ->
    exists h : positive,
      Pminus_mask p q = IsPos h /\
      q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
Proof.
  induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
   try discriminate H.
  (* p~1, q~1 *)
  destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
  repeat split; auto; right.
  destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
  rewrite ZL10; subst; auto.
  rewrite W; simpl; destruct r; auto; elim NE; auto.
  (* p~1, q~0 *)
  destruct (Pcompare_Gt_Gt _ _ H) as [H'|H']; clear H; rename H' into H.
  destruct (IHp q H) as (r & U & V & W); exists (r~1); rewrite ?U, ?V; auto.
  exists 1; subst; rewrite Pminus_mask_diag; auto.
  (* p~1, 1 *)
  exists (p~0); auto.
  (* p~0, q~1 *)
  destruct (IHp q (Pcompare_Lt_Gt _ _ H)) as (r & U & V & W).
  destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
  exists 1; subst; rewrite ZL10, Pplus_one_succ_r; auto.
  exists ((Ppred r)~1); rewrite W, Pplus_carry_pred_eq_plus, V; auto.
  (* p~0, q~0 *)
  destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
  repeat split; auto; right.
  destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
  rewrite ZL10; subst; auto.
  rewrite W; simpl; destruct r; auto; elim NE; auto.
  (* p~0, 1 *)
  exists (Pdouble_minus_one p); repeat split; destruct p; simpl; auto.
  rewrite Psucc_o_double_minus_one_eq_xO; auto.
Qed.

Theorem Pplus_minus :
  forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
Proof.
  intros p q H; destruct (Pminus_mask_Gt p q H) as (r & U & V & _).
  unfold Pminus; rewrite U; simpl; auto.
Qed.

(** When x<y, the substraction of x by y returns 1 *)

Lemma Pminus_mask_Lt : forall p q:positive, p<q -> Pminus_mask p q = IsNeg.
Proof.
  unfold Plt; induction p as [p IHp|p IHp| ]; destruct q; simpl; intros;
   try discriminate; try rewrite IHp; auto.
  apply Pcompare_Gt_Lt; auto.
  destruct (Pcompare_Lt_Lt _ _ H).
  rewrite Pminus_mask_IsNeg; simpl; auto.
  subst; rewrite Pminus_mask_carry_diag; auto.
Qed.

Lemma Pminus_Lt : forall p q:positive, p<q -> p-q = 1.
Proof.
  intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto.
Qed.

(** The substraction of x by x returns 1 *)

Lemma Pminus_Eq : forall p:positive, p-p = 1.
Proof.
 intros; unfold Pminus; rewrite Pminus_mask_diag; auto.
Qed.

(** Number of digits in a number *)

Fixpoint Psize (p:positive) : nat :=
  match p with
    | 1 => S O
    | p~1 => S (Psize p)
    | p~0 => S (Psize p)
  end.

Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat.
Proof.
  assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
  assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
  induction p; destruct q; simpl; auto; intros; try discriminate.
  intros; generalize (Pcompare_Gt_Lt _ _ H); auto.
  intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto.
Qed.