1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export BinNums.
Require Import BinPos RelationClasses Morphisms Setoid
Equalities OrdersFacts GenericMinMax Bool NAxioms NProperties.
Require BinNatDef.
(**********************************************************************)
(** * Binary natural numbers, operations and properties *)
(**********************************************************************)
(** The type [N] and its constructors [N0] and [Npos] are now
defined in [BinNums.v] *)
(** Every definitions and properties about binary natural numbers
are placed in a module [N] for qualification purpose. *)
Local Open Scope N_scope.
(** Every definitions and early properties about positive numbers
are placed in a module [N] for qualification purpose. *)
Module N
<: NAxiomsSig
<: UsualOrderedTypeFull
<: UsualDecidableTypeFull
<: TotalOrder.
(** Definitions of operations, now in a separate file *)
Include BinNatDef.N.
(** When including property functors, only inline t eq zero one two *)
Set Inline Level 30.
(** Logical predicates *)
Definition eq := @Logic.eq N.
Definition eq_equiv := @eq_equivalence N.
Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.
Infix "<=" := le : N_scope.
Infix "<" := lt : N_scope.
Infix ">=" := ge : N_scope.
Infix ">" := gt : N_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.
Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : N_scope.
Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.
(** Decidability of equality. *)
Definition eq_dec : forall n m : N, { n = m } + { n <> m }.
Proof.
decide equality.
apply Pos.eq_dec.
Defined.
(** Discrimination principle *)
Definition discr n : { p:positive | n = pos p } + { n = 0 }.
Proof.
destruct n; auto.
left; exists p; auto.
Defined.
(** Convenient induction principles *)
Definition binary_rect (P:N -> Type) (f0 : P 0)
(f2 : forall n, P n -> P (double n))
(fS2 : forall n, P n -> P (succ_double n)) (n : N) : P n :=
let P' p := P (pos p) in
let f2' p := f2 (pos p) in
let fS2' p := fS2 (pos p) in
match n with
| 0 => f0
| pos p => positive_rect P' fS2' f2' (fS2 0 f0) p
end.
Definition binary_rec (P:N -> Set) := binary_rect P.
Definition binary_ind (P:N -> Prop) := binary_rect P.
(** Peano induction on binary natural numbers *)
Definition peano_rect
(P : N -> Type) (f0 : P 0)
(f : forall n : N, P n -> P (succ n)) (n : N) : P n :=
let P' p := P (pos p) in
let f' p := f (pos p) in
match n with
| 0 => f0
| pos p => Pos.peano_rect P' (f 0 f0) f' p
end.
Theorem peano_rect_base P a f : peano_rect P a f 0 = a.
Proof.
reflexivity.
Qed.
Theorem peano_rect_succ P a f n :
peano_rect P a f (succ n) = f n (peano_rect P a f n).
Proof.
destruct n; simpl.
trivial.
now rewrite Pos.peano_rect_succ.
Qed.
Definition peano_ind (P : N -> Prop) := peano_rect P.
Definition peano_rec (P : N -> Set) := peano_rect P.
Theorem peano_rec_base P a f : peano_rec P a f 0 = a.
Proof.
apply peano_rect_base.
Qed.
Theorem peano_rec_succ P a f n :
peano_rec P a f (succ n) = f n (peano_rec P a f n).
Proof.
apply peano_rect_succ.
Qed.
(** Properties of mixed successor and predecessor. *)
Lemma pos_pred_spec p : Pos.pred_N p = pred (pos p).
Proof.
now destruct p.
Qed.
Lemma succ_pos_spec n : pos (succ_pos n) = succ n.
Proof.
now destruct n.
Qed.
Lemma pos_pred_succ n : Pos.pred_N (succ_pos n) = n.
Proof.
destruct n. trivial. apply Pos.pred_N_succ.
Qed.
Lemma succ_pos_pred p : succ (Pos.pred_N p) = pos p.
Proof.
destruct p; simpl; trivial. f_equal. apply Pos.succ_pred_double.
Qed.
(** Properties of successor and predecessor *)
Theorem pred_succ n : pred (succ n) = n.
Proof.
destruct n; trivial. simpl. apply Pos.pred_N_succ.
Qed.
Theorem pred_sub n : pred n = sub n 1.
Proof.
now destruct n as [|[p|p|]].
Qed.
Theorem succ_0_discr n : succ n <> 0.
Proof.
now destruct n.
Qed.
(** Specification of addition *)
Theorem add_0_l n : 0 + n = n.
Proof.
reflexivity.
Qed.
Theorem add_succ_l n m : succ n + m = succ (n + m).
Proof.
destruct n, m; unfold succ, add; now rewrite ?Pos.add_1_l, ?Pos.add_succ_l.
Qed.
(** Specification of subtraction. *)
Theorem sub_0_r n : n - 0 = n.
Proof.
now destruct n.
Qed.
Theorem sub_succ_r n m : n - succ m = pred (n - m).
Proof.
destruct n as [|p], m as [|q]; trivial.
now destruct p.
simpl. rewrite Pos.sub_mask_succ_r, Pos.sub_mask_carry_spec.
now destruct (Pos.sub_mask p q) as [|[r|r|]|].
Qed.
(** Specification of multiplication *)
Theorem mul_0_l n : 0 * n = 0.
Proof.
reflexivity.
Qed.
Theorem mul_succ_l n m : (succ n) * m = n * m + m.
Proof.
destruct n, m; simpl; trivial. f_equal. rewrite Pos.add_comm.
apply Pos.mul_succ_l.
Qed.
(** Specification of boolean comparisons. *)
Lemma eqb_eq n m : eqb n m = true <-> n=m.
Proof.
destruct n as [|n], m as [|m]; simpl; try easy'.
rewrite Pos.eqb_eq. split; intro H. now subst. now destr_eq H.
Qed.
Lemma ltb_lt n m : (n <? m) = true <-> n < m.
Proof.
unfold ltb, lt. destruct compare; easy'.
Qed.
Lemma leb_le n m : (n <=? m) = true <-> n <= m.
Proof.
unfold leb, le. destruct compare; easy'.
Qed.
(** Basic properties of comparison *)
Theorem compare_eq_iff n m : (n ?= m) = Eq <-> n = m.
Proof.
destruct n, m; simpl; rewrite ?Pos.compare_eq_iff; split; congruence.
Qed.
Theorem compare_lt_iff n m : (n ?= m) = Lt <-> n < m.
Proof.
reflexivity.
Qed.
Theorem compare_le_iff n m : (n ?= m) <> Gt <-> n <= m.
Proof.
reflexivity.
Qed.
Theorem compare_antisym n m : (m ?= n) = CompOpp (n ?= m).
Proof.
destruct n, m; simpl; trivial. apply Pos.compare_antisym.
Qed.
(** Some more advanced properties of comparison and orders,
including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *)
Include BoolOrderFacts.
(** We regroup here some results used for proving the correctness
of more advanced functions. These results will also be provided
by the generic functor of properties about natural numbers
instantiated at the end of the file. *)
Module Import Private_BootStrap.
Theorem add_0_r n : n + 0 = n.
Proof.
now destruct n.
Qed.
Theorem add_comm n m : n + m = m + n.
Proof.
destruct n, m; simpl; try reflexivity. simpl. f_equal. apply Pos.add_comm.
Qed.
Theorem add_assoc n m p : n + (m + p) = n + m + p.
Proof.
destruct n; try reflexivity.
destruct m; try reflexivity.
destruct p; try reflexivity.
simpl. f_equal. apply Pos.add_assoc.
Qed.
Lemma sub_add n m : n <= m -> m - n + n = m.
Proof.
destruct n as [|p], m as [|q]; simpl; try easy'. intros H.
case Pos.sub_mask_spec; intros; simpl; subst; trivial.
now rewrite Pos.add_comm.
apply Pos.le_nlt in H. elim H. apply Pos.lt_add_r.
Qed.
Theorem mul_comm n m : n * m = m * n.
Proof.
destruct n, m; simpl; trivial. f_equal. apply Pos.mul_comm.
Qed.
Lemma le_0_l n : 0<=n.
Proof.
now destruct n.
Qed.
Lemma leb_spec n m : BoolSpec (n<=m) (m<n) (n <=? m).
Proof.
unfold le, lt, leb. rewrite (compare_antisym n m).
case compare; now constructor.
Qed.
Lemma add_lt_cancel_l n m p : p+n < p+m -> n<m.
Proof.
intro H. destruct p. simpl; auto.
destruct n; destruct m.
elim (Pos.lt_irrefl _ H).
red; auto.
rewrite add_0_r in H. simpl in H.
red in H. simpl in H.
elim (Pos.lt_not_add_l _ _ H).
now apply (Pos.add_lt_mono_l p).
Qed.
End Private_BootStrap.
(** Specification of lt and le. *)
Lemma lt_succ_r n m : n < succ m <-> n<=m.
Proof.
destruct n as [|p], m as [|q]; simpl; try easy'.
split. now destruct p. now destruct 1.
apply Pos.lt_succ_r.
Qed.
(** Properties of [double] and [succ_double] *)
Lemma double_spec n : double n = 2 * n.
Proof.
reflexivity.
Qed.
Lemma succ_double_spec n : succ_double n = 2 * n + 1.
Proof.
now destruct n.
Qed.
Lemma double_add n m : double (n+m) = double n + double m.
Proof.
now destruct n, m.
Qed.
Lemma succ_double_add n m : succ_double (n+m) = double n + succ_double m.
Proof.
now destruct n, m.
Qed.
Lemma double_mul n m : double (n*m) = double n * m.
Proof.
now destruct n, m.
Qed.
Lemma succ_double_mul n m :
succ_double n * m = double n * m + m.
Proof.
destruct n; simpl; destruct m; trivial.
now rewrite Pos.add_comm.
Qed.
Lemma div2_double n : div2 (double n) = n.
Proof.
now destruct n.
Qed.
Lemma div2_succ_double n : div2 (succ_double n) = n.
Proof.
now destruct n.
Qed.
Lemma double_inj n m : double n = double m -> n = m.
Proof.
intro H. rewrite <- (div2_double n), H. apply div2_double.
Qed.
Lemma succ_double_inj n m : succ_double n = succ_double m -> n = m.
Proof.
intro H. rewrite <- (div2_succ_double n), H. apply div2_succ_double.
Qed.
Lemma succ_double_lt n m : n<m -> succ_double n < double m.
Proof.
destruct n as [|n], m as [|m]; intros H; try easy.
unfold lt in *; simpl in *. now rewrite Pos.compare_xI_xO, H.
Qed.
(** Specification of minimum and maximum *)
Theorem min_l n m : n <= m -> min n m = n.
Proof.
unfold min, le. case compare; trivial. now destruct 1.
Qed.
Theorem min_r n m : m <= n -> min n m = m.
Proof.
unfold min, le. rewrite compare_antisym.
case compare_spec; trivial. now destruct 2.
Qed.
Theorem max_l n m : m <= n -> max n m = n.
Proof.
unfold max, le. rewrite compare_antisym.
case compare_spec; auto. now destruct 2.
Qed.
Theorem max_r n m : n <= m -> max n m = m.
Proof.
unfold max, le. case compare; trivial. now destruct 1.
Qed.
(** 0 is the least natural number *)
Theorem compare_0_r n : (n ?= 0) <> Lt.
Proof.
now destruct n.
Qed.
(** Specifications of power *)
Lemma pow_0_r n : n ^ 0 = 1.
Proof. reflexivity. Qed.
Lemma pow_succ_r n p : 0<=p -> n^(succ p) = n * n^p.
Proof.
intros _.
destruct n, p; simpl; trivial; f_equal. apply Pos.pow_succ_r.
Qed.
Lemma pow_neg_r n p : p<0 -> n^p = 0.
Proof.
now destruct p.
Qed.
(** Specification of square *)
Lemma square_spec n : square n = n * n.
Proof.
destruct n; trivial. simpl. f_equal. apply Pos.square_spec.
Qed.
(** Specification of Base-2 logarithm *)
Lemma size_log2 n : n<>0 -> size n = succ (log2 n).
Proof.
destruct n as [|[n|n| ]]; trivial. now destruct 1.
Qed.
Lemma size_gt n : n < 2^(size n).
Proof.
destruct n. reflexivity. simpl. apply Pos.size_gt.
Qed.
Lemma size_le n : 2^(size n) <= succ_double n.
Proof.
destruct n. discriminate. simpl.
change (2^Pos.size p <= Pos.succ (p~0))%positive.
apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le.
Qed.
Lemma log2_spec n : 0 < n ->
2^(log2 n) <= n < 2^(succ (log2 n)).
Proof.
destruct n as [|[p|p|]]; discriminate || intros _; simpl; split.
apply (size_le (pos p)).
apply Pos.size_gt.
apply Pos.size_le.
apply Pos.size_gt.
discriminate.
reflexivity.
Qed.
Lemma log2_nonpos n : n<=0 -> log2 n = 0.
Proof.
destruct n; intros Hn. reflexivity. now destruct Hn.
Qed.
(** Specification of parity functions *)
Lemma even_spec n : even n = true <-> Even n.
Proof.
destruct n.
split. now exists 0.
trivial.
destruct p; simpl; split; try easy.
intros (m,H). now destruct m.
now exists (pos p).
intros (m,H). now destruct m.
Qed.
Lemma odd_spec n : odd n = true <-> Odd n.
Proof.
destruct n.
split. discriminate.
intros (m,H). now destruct m.
destruct p; simpl; split; try easy.
now exists (pos p).
intros (m,H). now destruct m.
now exists 0.
Qed.
(** Specification of the euclidean division *)
Theorem pos_div_eucl_spec (a:positive)(b:N) :
let (q,r) := pos_div_eucl a b in pos a = q * b + r.
Proof.
induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta.
(* a~1 *)
destruct pos_div_eucl as (q,r).
change (pos a~1) with (succ_double (pos a)).
rewrite IHa, succ_double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
now rewrite (add_comm b), sub_add.
(* a~0 *)
destruct pos_div_eucl as (q,r).
change (pos a~0) with (double (pos a)).
rewrite IHa, double_add, double_mul.
case leb_spec; intros H; trivial.
rewrite succ_double_mul, <- add_assoc. f_equal.
now rewrite (add_comm b), sub_add.
(* 1 *)
now destruct b as [|[ | | ]].
Qed.
Theorem div_eucl_spec a b :
let (q,r) := div_eucl a b in a = b * q + r.
Proof.
destruct a as [|a], b as [|b]; unfold div_eucl; trivial.
generalize (pos_div_eucl_spec a (pos b)).
destruct pos_div_eucl. now rewrite mul_comm.
Qed.
Theorem div_mod' a b : a = b * (a/b) + (a mod b).
Proof.
generalize (div_eucl_spec a b).
unfold div, modulo. now destruct div_eucl.
Qed.
Definition div_mod a b : b<>0 -> a = b * (a/b) + (a mod b).
Proof.
intros _. apply div_mod'.
Qed.
Theorem pos_div_eucl_remainder (a:positive) (b:N) :
b<>0 -> snd (pos_div_eucl a b) < b.
Proof.
intros Hb.
induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta.
(* a~1 *)
destruct pos_div_eucl as (q,r); simpl in *.
case leb_spec; intros H; simpl; trivial.
apply add_lt_cancel_l with b. rewrite add_comm, sub_add by trivial.
destruct b as [|b]; [now destruct Hb| simpl; rewrite Pos.add_diag ].
apply (succ_double_lt _ _ IHa).
(* a~0 *)
destruct pos_div_eucl as (q,r); simpl in *.
case leb_spec; intros H; simpl; trivial.
apply add_lt_cancel_l with b. rewrite add_comm, sub_add by trivial.
destruct b as [|b]; [now destruct Hb| simpl; rewrite Pos.add_diag ].
now destruct r.
(* 1 *)
destruct b as [|[ | | ]]; easy || (now destruct Hb).
Qed.
Theorem mod_lt a b : b<>0 -> a mod b < b.
Proof.
destruct b as [ |b]. now destruct 1.
destruct a as [ |a]. reflexivity.
unfold modulo. simpl. apply pos_div_eucl_remainder.
Qed.
Theorem mod_bound_pos a b : 0<=a -> 0<b -> 0 <= a mod b < b.
Proof.
intros _ H. split. apply le_0_l. apply mod_lt. now destruct b.
Qed.
(** Specification of square root *)
Lemma sqrtrem_sqrt n : fst (sqrtrem n) = sqrt n.
Proof.
destruct n. reflexivity.
unfold sqrtrem, sqrt, Pos.sqrt.
destruct (Pos.sqrtrem p) as (s,r). now destruct r.
Qed.
Lemma sqrtrem_spec n :
let (s,r) := sqrtrem n in n = s*s + r /\ r <= 2*s.
Proof.
destruct n. now split.
generalize (Pos.sqrtrem_spec p). simpl.
destruct 1; simpl; subst; now split.
Qed.
Lemma sqrt_spec n : 0<=n ->
let s := sqrt n in s*s <= n < (succ s)*(succ s).
Proof.
intros _. destruct n. now split. apply (Pos.sqrt_spec p).
Qed.
Lemma sqrt_neg n : n<0 -> sqrt n = 0.
Proof.
now destruct n.
Qed.
(** Specification of gcd *)
(** The first component of ggcd is gcd *)
Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b.
Proof.
destruct a as [|p], b as [|q]; simpl; auto.
assert (H := Pos.ggcd_gcd p q).
destruct Pos.ggcd as (g,(aa,bb)); simpl; now f_equal.
Qed.
(** The other components of ggcd are indeed the correct factors. *)
Lemma ggcd_correct_divisors a b :
let '(g,(aa,bb)) := ggcd a b in
a=g*aa /\ b=g*bb.
Proof.
destruct a as [|p], b as [|q]; simpl; auto.
now rewrite Pos.mul_1_r.
now rewrite Pos.mul_1_r.
generalize (Pos.ggcd_correct_divisors p q).
destruct Pos.ggcd as (g,(aa,bb)); simpl.
destruct 1; split; now f_equal.
Qed.
(** We can use this fact to prove a part of the gcd correctness *)
Lemma gcd_divide_l a b : (gcd a b | a).
Proof.
rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa.
now rewrite mul_comm.
Qed.
Lemma gcd_divide_r a b : (gcd a b | b).
Proof.
rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb.
now rewrite mul_comm.
Qed.
(** We now prove directly that gcd is the greatest amongst common divisors *)
Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c|gcd a b).
Proof.
destruct a as [ |p], b as [ |q]; simpl; trivial.
destruct c as [ |r]. intros (s,H). destruct s; discriminate.
intros ([ |s],Hs) ([ |t],Ht); try discriminate; simpl in *.
destruct (Pos.gcd_greatest p q r) as (u,H).
exists s. now inversion Hs.
exists t. now inversion Ht.
exists (pos u). simpl; now f_equal.
Qed.
Lemma gcd_nonneg a b : 0 <= gcd a b.
Proof. apply le_0_l. Qed.
(** Specification of bitwise functions *)
(** Correctness proofs for [testbit]. *)
Lemma testbit_even_0 a : testbit (2*a) 0 = false.
Proof.
now destruct a.
Qed.
Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
Proof.
now destruct a.
Qed.
Lemma testbit_succ_r_div2 a n : 0<=n ->
testbit a (succ n) = testbit (div2 a) n.
Proof.
intros _. destruct a as [|[a|a| ]], n as [|n]; simpl; trivial;
f_equal; apply Pos.pred_N_succ.
Qed.
Lemma testbit_odd_succ a n : 0<=n ->
testbit (2*a+1) (succ n) = testbit a n.
Proof.
intros H. rewrite testbit_succ_r_div2 by trivial. f_equal. now destruct a.
Qed.
Lemma testbit_even_succ a n : 0<=n ->
testbit (2*a) (succ n) = testbit a n.
Proof.
intros H. rewrite testbit_succ_r_div2 by trivial. f_equal. now destruct a.
Qed.
Lemma testbit_neg_r a n : n<0 -> testbit a n = false.
Proof.
now destruct n.
Qed.
(** Correctness proofs for shifts *)
Lemma shiftr_succ_r a n :
shiftr a (succ n) = div2 (shiftr a n).
Proof.
destruct n; simpl; trivial. apply Pos.iter_succ.
Qed.
Lemma shiftl_succ_r a n :
shiftl a (succ n) = double (shiftl a n).
Proof.
destruct n, a; simpl; trivial. f_equal. apply Pos.iter_succ.
Qed.
Lemma shiftr_spec a n m : 0<=m ->
testbit (shiftr a n) m = testbit a (m+n).
Proof.
intros _. revert a m.
induction n using peano_ind; intros a m. now rewrite add_0_r.
rewrite add_comm, add_succ_l, add_comm, <- add_succ_l.
now rewrite <- IHn, testbit_succ_r_div2, shiftr_succ_r by apply le_0_l.
Qed.
Lemma shiftl_spec_high a n m : 0<=m -> n<=m ->
testbit (shiftl a n) m = testbit a (m-n).
Proof.
intros _ H.
rewrite <- (sub_add n m H) at 1.
set (m' := m-n). clearbody m'. clear H m. revert a m'.
induction n using peano_ind; intros a m.
rewrite add_0_r; now destruct a.
rewrite shiftl_succ_r.
rewrite add_comm, add_succ_l, add_comm.
now rewrite testbit_succ_r_div2, div2_double by apply le_0_l.
Qed.
Lemma shiftl_spec_low a n m : m<n ->
testbit (shiftl a n) m = false.
Proof.
revert a m.
induction n using peano_ind; intros a m H.
elim (le_0_l m). now rewrite compare_antisym, H.
rewrite shiftl_succ_r.
destruct m. now destruct (shiftl a n).
rewrite <- (succ_pos_pred p), testbit_succ_r_div2, div2_double by apply le_0_l.
apply IHn.
apply add_lt_cancel_l with 1. rewrite 2 (add_succ_l 0). simpl.
now rewrite succ_pos_pred.
Qed.
Definition div2_spec a : div2 a = shiftr a 1.
Proof.
reflexivity.
Qed.
(** Semantics of bitwise operations *)
Lemma pos_lxor_spec p p' n :
testbit (Pos.lxor p p') n = xorb (Pos.testbit p n) (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.lxor; trivial; now rewrite <-IH) ||
(now destruct Pos.testbit).
Qed.
Lemma lxor_spec a a' n :
testbit (lxor a a') n = xorb (testbit a n) (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now destruct Pos.testbit.
now destruct Pos.testbit.
apply pos_lxor_spec.
Qed.
Lemma pos_lor_spec p p' n :
Pos.testbit (Pos.lor p p') n = (Pos.testbit p n) || (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
apply IH || now rewrite orb_false_r.
Qed.
Lemma lor_spec a a' n :
testbit (lor a a') n = (testbit a n) || (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite orb_false_r.
apply pos_lor_spec.
Qed.
Lemma pos_land_spec p p' n :
testbit (Pos.land p p') n = (Pos.testbit p n) && (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.land; trivial; now rewrite <-IH) ||
(now rewrite andb_false_r).
Qed.
Lemma land_spec a a' n :
testbit (land a a') n = (testbit a n) && (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite andb_false_r.
apply pos_land_spec.
Qed.
Lemma pos_ldiff_spec p p' n :
testbit (Pos.ldiff p p') n = (Pos.testbit p n) && negb (Pos.testbit p' n).
Proof.
revert p' n.
induction p as [p IH|p IH|]; intros [p'|p'|] [|n]; trivial; simpl;
(specialize (IH p'); destruct Pos.ldiff; trivial; now rewrite <-IH) ||
(now rewrite andb_true_r).
Qed.
Lemma ldiff_spec a a' n :
testbit (ldiff a a') n = (testbit a n) && negb (testbit a' n).
Proof.
destruct a, a'; simpl; trivial.
now rewrite andb_true_r.
apply pos_ldiff_spec.
Qed.
(** Specification of constants *)
Lemma one_succ : 1 = succ 0.
Proof. reflexivity. Qed.
Lemma two_succ : 2 = succ 1.
Proof. reflexivity. Qed.
Definition pred_0 : pred 0 = 0.
Proof. reflexivity. Qed.
(** Proofs of morphisms, obvious since eq is Leibniz *)
Local Obligation Tactic := simpl_relation.
Program Definition succ_wd : Proper (eq==>eq) succ := _.
Program Definition pred_wd : Proper (eq==>eq) pred := _.
Program Definition add_wd : Proper (eq==>eq==>eq) add := _.
Program Definition sub_wd : Proper (eq==>eq==>eq) sub := _.
Program Definition mul_wd : Proper (eq==>eq==>eq) mul := _.
Program Definition lt_wd : Proper (eq==>eq==>iff) lt := _.
Program Definition div_wd : Proper (eq==>eq==>eq) div := _.
Program Definition mod_wd : Proper (eq==>eq==>eq) modulo := _.
Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _.
Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _.
(** Generic induction / recursion *)
Theorem bi_induction :
forall A : N -> Prop, Proper (Logic.eq==>iff) A ->
A 0 -> (forall n, A n <-> A (succ n)) -> forall n : N, A n.
Proof.
intros A A_wd A0 AS. apply peano_rect. assumption. intros; now apply -> AS.
Qed.
Definition recursion {A} : A -> (N -> A -> A) -> N -> A :=
peano_rect (fun _ => A).
Instance recursion_wd {A} (Aeq : relation A) :
Proper (Aeq==>(Logic.eq==>Aeq==>Aeq)==>Logic.eq==>Aeq) recursion.
Proof.
intros a a' Ea f f' Ef x x' Ex. subst x'.
induction x using peano_ind.
trivial.
unfold recursion in *. rewrite 2 peano_rect_succ. now apply Ef.
Qed.
Theorem recursion_0 {A} (a:A) (f:N->A->A) : recursion a f 0 = a.
Proof. reflexivity. Qed.
Theorem recursion_succ {A} (Aeq : relation A) (a : A) (f : N -> A -> A):
Aeq a a -> Proper (Logic.eq==>Aeq==>Aeq) f ->
forall n : N, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
unfold recursion; intros a_wd f_wd n. induction n using peano_ind.
rewrite peano_rect_succ. now apply f_wd.
rewrite !peano_rect_succ in *. now apply f_wd.
Qed.
(** Instantiation of generic properties of natural numbers *)
(** The Bind Scope prevents N to stay associated with abstract_scope.
(TODO FIX) *)
Include NProp. Bind Scope N_scope with N.
Include UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
(** In generic statements, the predicates [lt] and [le] have been
favored, whereas [gt] and [ge] don't even exist in the abstract
layers. The use of [gt] and [ge] is hence not recommended. We provide
here the bare minimal results to related them with [lt] and [le]. *)
Lemma gt_lt_iff n m : n > m <-> m < n.
Proof.
unfold lt, gt. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma gt_lt n m : n > m -> m < n.
Proof.
apply gt_lt_iff.
Qed.
Lemma lt_gt n m : n < m -> m > n.
Proof.
apply gt_lt_iff.
Qed.
Lemma ge_le_iff n m : n >= m <-> m <= n.
Proof.
unfold le, ge. now rewrite compare_antisym, CompOpp_iff.
Qed.
Lemma ge_le n m : n >= m -> m <= n.
Proof.
apply ge_le_iff.
Qed.
Lemma le_ge n m : n <= m -> m >= n.
Proof.
apply ge_le_iff.
Qed.
(** Auxiliary results about right shift on positive numbers,
used in BinInt *)
Lemma pos_pred_shiftl_low : forall p n m, m<n ->
testbit (Pos.pred_N (Pos.shiftl p n)) m = true.
Proof.
induction n using peano_ind.
now destruct m.
intros m H. unfold Pos.shiftl.
destruct n as [|n]; simpl in *.
destruct m. now destruct p. elim (Pos.nlt_1_r _ H).
rewrite Pos.iter_succ. simpl.
set (u:=Pos.iter n xO p) in *; clearbody u.
destruct m as [|m]. now destruct u.
rewrite <- (IHn (Pos.pred_N m)).
rewrite <- (testbit_odd_succ _ (Pos.pred_N m)).
rewrite succ_pos_pred. now destruct u.
apply le_0_l.
apply succ_lt_mono. now rewrite succ_pos_pred.
Qed.
Lemma pos_pred_shiftl_high : forall p n m, n<=m ->
testbit (Pos.pred_N (Pos.shiftl p n)) m =
testbit (shiftl (Pos.pred_N p) n) m.
Proof.
induction n using peano_ind; intros m H.
unfold shiftl. simpl. now destruct (Pos.pred_N p).
rewrite shiftl_succ_r.
destruct n as [|n].
destruct m as [|m]. now destruct H. now destruct p.
destruct m as [|m]. now destruct H.
rewrite <- (succ_pos_pred m).
rewrite double_spec, testbit_even_succ by apply le_0_l.
rewrite <- IHn.
rewrite testbit_succ_r_div2 by apply le_0_l.
f_equal. simpl. rewrite Pos.iter_succ.
now destruct (Pos.iter n xO p).
apply succ_le_mono. now rewrite succ_pos_pred.
Qed.
Lemma pred_div2_up p : Pos.pred_N (Pos.div2_up p) = div2 (Pos.pred_N p).
Proof.
destruct p as [p|p| ]; trivial.
simpl. apply Pos.pred_N_succ.
destruct p; simpl; trivial.
Qed.
End N.
(** Exportation of notations *)
Infix "+" := N.add : N_scope.
Infix "-" := N.sub : N_scope.
Infix "*" := N.mul : N_scope.
Infix "^" := N.pow : N_scope.
Infix "?=" := N.compare (at level 70, no associativity) : N_scope.
Infix "<=" := N.le : N_scope.
Infix "<" := N.lt : N_scope.
Infix ">=" := N.ge : N_scope.
Infix ">" := N.gt : N_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : N_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : N_scope.
Notation "x < y < z" := (x < y /\ y < z) : N_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : N_scope.
Infix "=?" := N.eqb (at level 70, no associativity) : N_scope.
Infix "<=?" := N.leb (at level 70, no associativity) : N_scope.
Infix "<?" := N.ltb (at level 70, no associativity) : N_scope.
Infix "/" := N.div : N_scope.
Infix "mod" := N.modulo (at level 40, no associativity) : N_scope.
Notation "( p | q )" := (N.divide p q) (at level 0) : N_scope.
(** Compatibility notations *)
(*Notation N := N (compat "8.3").*) (*hidden by module N above *)
Notation N_rect := N_rect (only parsing).
Notation N_rec := N_rec (only parsing).
Notation N_ind := N_ind (only parsing).
Notation N0 := N0 (only parsing).
Notation Npos := N.pos (only parsing).
Notation Ndiscr := N.discr (compat "8.3").
Notation Ndouble_plus_one := N.succ_double (compat "8.3").
Notation Ndouble := N.double (compat "8.3").
Notation Nsucc := N.succ (compat "8.3").
Notation Npred := N.pred (compat "8.3").
Notation Nsucc_pos := N.succ_pos (compat "8.3").
Notation Ppred_N := Pos.pred_N (compat "8.3").
Notation Nplus := N.add (compat "8.3").
Notation Nminus := N.sub (compat "8.3").
Notation Nmult := N.mul (compat "8.3").
Notation Neqb := N.eqb (compat "8.3").
Notation Ncompare := N.compare (compat "8.3").
Notation Nlt := N.lt (compat "8.3").
Notation Ngt := N.gt (compat "8.3").
Notation Nle := N.le (compat "8.3").
Notation Nge := N.ge (compat "8.3").
Notation Nmin := N.min (compat "8.3").
Notation Nmax := N.max (compat "8.3").
Notation Ndiv2 := N.div2 (compat "8.3").
Notation Neven := N.even (compat "8.3").
Notation Nodd := N.odd (compat "8.3").
Notation Npow := N.pow (compat "8.3").
Notation Nlog2 := N.log2 (compat "8.3").
Notation nat_of_N := N.to_nat (compat "8.3").
Notation N_of_nat := N.of_nat (compat "8.3").
Notation N_eq_dec := N.eq_dec (compat "8.3").
Notation Nrect := N.peano_rect (compat "8.3").
Notation Nrect_base := N.peano_rect_base (compat "8.3").
Notation Nrect_step := N.peano_rect_succ (compat "8.3").
Notation Nind := N.peano_ind (compat "8.3").
Notation Nrec := N.peano_rec (compat "8.3").
Notation Nrec_base := N.peano_rec_base (compat "8.3").
Notation Nrec_succ := N.peano_rec_succ (compat "8.3").
Notation Npred_succ := N.pred_succ (compat "8.3").
Notation Npred_minus := N.pred_sub (compat "8.3").
Notation Nsucc_pred := N.succ_pred (compat "8.3").
Notation Ppred_N_spec := N.pos_pred_spec (compat "8.3").
Notation Nsucc_pos_spec := N.succ_pos_spec (compat "8.3").
Notation Ppred_Nsucc := N.pos_pred_succ (compat "8.3").
Notation Nplus_0_l := N.add_0_l (compat "8.3").
Notation Nplus_0_r := N.add_0_r (compat "8.3").
Notation Nplus_comm := N.add_comm (compat "8.3").
Notation Nplus_assoc := N.add_assoc (compat "8.3").
Notation Nplus_succ := N.add_succ_l (compat "8.3").
Notation Nsucc_0 := N.succ_0_discr (compat "8.3").
Notation Nsucc_inj := N.succ_inj (compat "8.3").
Notation Nminus_N0_Nle := N.sub_0_le (compat "8.3").
Notation Nminus_0_r := N.sub_0_r (compat "8.3").
Notation Nminus_succ_r:= N.sub_succ_r (compat "8.3").
Notation Nmult_0_l := N.mul_0_l (compat "8.3").
Notation Nmult_1_l := N.mul_1_l (compat "8.3").
Notation Nmult_1_r := N.mul_1_r (compat "8.3").
Notation Nmult_comm := N.mul_comm (compat "8.3").
Notation Nmult_assoc := N.mul_assoc (compat "8.3").
Notation Nmult_plus_distr_r := N.mul_add_distr_r (compat "8.3").
Notation Neqb_eq := N.eqb_eq (compat "8.3").
Notation Nle_0 := N.le_0_l (compat "8.3").
Notation Ncompare_refl := N.compare_refl (compat "8.3").
Notation Ncompare_Eq_eq := N.compare_eq (compat "8.3").
Notation Ncompare_eq_correct := N.compare_eq_iff (compat "8.3").
Notation Nlt_irrefl := N.lt_irrefl (compat "8.3").
Notation Nlt_trans := N.lt_trans (compat "8.3").
Notation Nle_lteq := N.lt_eq_cases (compat "8.3").
Notation Nlt_succ_r := N.lt_succ_r (compat "8.3").
Notation Nle_trans := N.le_trans (compat "8.3").
Notation Nle_succ_l := N.le_succ_l (compat "8.3").
Notation Ncompare_spec := N.compare_spec (compat "8.3").
Notation Ncompare_0 := N.compare_0_r (compat "8.3").
Notation Ndouble_div2 := N.div2_double (compat "8.3").
Notation Ndouble_plus_one_div2 := N.div2_succ_double (compat "8.3").
Notation Ndouble_inj := N.double_inj (compat "8.3").
Notation Ndouble_plus_one_inj := N.succ_double_inj (compat "8.3").
Notation Npow_0_r := N.pow_0_r (compat "8.3").
Notation Npow_succ_r := N.pow_succ_r (compat "8.3").
Notation Nlog2_spec := N.log2_spec (compat "8.3").
Notation Nlog2_nonpos := N.log2_nonpos (compat "8.3").
Notation Neven_spec := N.even_spec (compat "8.3").
Notation Nodd_spec := N.odd_spec (compat "8.3").
Notation Nlt_not_eq := N.lt_neq (compat "8.3").
Notation Ngt_Nlt := N.gt_lt (compat "8.3").
(** More complex compatibility facts, expressed as lemmas
(to preserve scopes for instance) *)
Lemma Nplus_reg_l n m p : n + m = n + p -> m = p.
Proof (proj1 (N.add_cancel_l m p n)).
Lemma Nmult_Sn_m n m : N.succ n * m = m + n * m.
Proof (eq_trans (N.mul_succ_l n m) (N.add_comm _ _)).
Lemma Nmult_plus_distr_l n m p : p * (n + m) = p * n + p * m.
Proof (N.mul_add_distr_l p n m).
Lemma Nmult_reg_r n m p : p <> 0 -> n * p = m * p -> n = m.
Proof (fun H => proj1 (N.mul_cancel_r n m p H)).
Lemma Ncompare_antisym n m : CompOpp (n ?= m) = (m ?= n).
Proof (eq_sym (N.compare_antisym n m)).
Definition N_ind_double a P f0 f2 fS2 := N.binary_ind P f0 f2 fS2 a.
Definition N_rec_double a P f0 f2 fS2 := N.binary_rec P f0 f2 fS2 a.
(** Not kept : Ncompare_n_Sm Nplus_lt_cancel_l *)
|