1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: BinNat.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
Require Import BinPos.
Unset Boxed Definitions.
(**********************************************************************)
(** Binary natural numbers *)
Inductive N : Set :=
| N0 : N
| Npos : positive -> N.
(** Declare binding key for scope positive_scope *)
Delimit Scope N_scope with N.
(** Automatically open scope positive_scope for the constructors of N *)
Bind Scope N_scope with N.
Arguments Scope Npos [positive_scope].
Open Local Scope N_scope.
Definition Ndiscr : forall n:N, { p:positive | n = Npos p } + { n = N0 }.
Proof.
destruct n; auto.
left; exists p; auto.
Defined.
(** Operation x -> 2*x+1 *)
Definition Ndouble_plus_one x :=
match x with
| N0 => Npos 1
| Npos p => Npos (xI p)
end.
(** Operation x -> 2*x *)
Definition Ndouble n :=
match n with
| N0 => N0
| Npos p => Npos (xO p)
end.
(** Successor *)
Definition Nsucc n :=
match n with
| N0 => Npos 1
| Npos p => Npos (Psucc p)
end.
(** Predecessor *)
Definition Npred (n : N) := match n with
| N0 => N0
| Npos p => match p with
| xH => N0
| _ => Npos (Ppred p)
end
end.
(** Addition *)
Definition Nplus n m :=
match n, m with
| N0, _ => m
| _, N0 => n
| Npos p, Npos q => Npos (p + q)
end.
Infix "+" := Nplus : N_scope.
(** Subtraction *)
Definition Nminus (n m : N) :=
match n, m with
| N0, _ => N0
| n, N0 => n
| Npos n', Npos m' =>
match Pminus_mask n' m' with
| IsPos p => Npos p
| _ => N0
end
end.
Infix "-" := Nminus : N_scope.
(** Multiplication *)
Definition Nmult n m :=
match n, m with
| N0, _ => N0
| _, N0 => N0
| Npos p, Npos q => Npos (p * q)
end.
Infix "*" := Nmult : N_scope.
(** Boolean Equality *)
Definition Neqb n m :=
match n, m with
| N0, N0 => true
| Npos n, Npos m => Peqb n m
| _,_ => false
end.
(** Order *)
Definition Ncompare n m :=
match n, m with
| N0, N0 => Eq
| N0, Npos m' => Lt
| Npos n', N0 => Gt
| Npos n', Npos m' => (n' ?= m')%positive Eq
end.
Infix "?=" := Ncompare (at level 70, no associativity) : N_scope.
Definition Nlt (x y:N) := (x ?= y) = Lt.
Definition Ngt (x y:N) := (x ?= y) = Gt.
Definition Nle (x y:N) := (x ?= y) <> Gt.
Definition Nge (x y:N) := (x ?= y) <> Lt.
Infix "<=" := Nle : N_scope.
Infix "<" := Nlt : N_scope.
Infix ">=" := Nge : N_scope.
Infix ">" := Ngt : N_scope.
(** Min and max *)
Definition Nmin (n n' : N) := match Ncompare n n' with
| Lt | Eq => n
| Gt => n'
end.
Definition Nmax (n n' : N) := match Ncompare n n' with
| Lt | Eq => n'
| Gt => n
end.
(** Decidability of equality. *)
Definition N_eq_dec : forall n m : N, { n = m } + { n <> m }.
Proof.
decide equality.
apply positive_eq_dec.
Defined.
(** convenient induction principles *)
Lemma N_ind_double :
forall (a:N) (P:N -> Prop),
P N0 ->
(forall a, P a -> P (Ndouble a)) ->
(forall a, P a -> P (Ndouble_plus_one a)) -> P a.
Proof.
intros; elim a. trivial.
simple induction p. intros.
apply (H1 (Npos p0)); trivial.
intros; apply (H0 (Npos p0)); trivial.
intros; apply (H1 N0); assumption.
Qed.
Lemma N_rec_double :
forall (a:N) (P:N -> Set),
P N0 ->
(forall a, P a -> P (Ndouble a)) ->
(forall a, P a -> P (Ndouble_plus_one a)) -> P a.
Proof.
intros; elim a. trivial.
simple induction p. intros.
apply (H1 (Npos p0)); trivial.
intros; apply (H0 (Npos p0)); trivial.
intros; apply (H1 N0); assumption.
Qed.
(** Peano induction on binary natural numbers *)
Definition Nrect
(P : N -> Type) (a : P N0)
(f : forall n : N, P n -> P (Nsucc n)) (n : N) : P n :=
let f' (p : positive) (x : P (Npos p)) := f (Npos p) x in
let P' (p : positive) := P (Npos p) in
match n return (P n) with
| N0 => a
| Npos p => Prect P' (f N0 a) f' p
end.
Theorem Nrect_base : forall P a f, Nrect P a f N0 = a.
Proof.
intros P a f; simpl; reflexivity.
Qed.
Theorem Nrect_step : forall P a f n, Nrect P a f (Nsucc n) = f n (Nrect P a f n).
Proof.
intros P a f; destruct n as [| p]; simpl;
[rewrite Prect_base | rewrite Prect_succ]; reflexivity.
Qed.
Definition Nind (P : N -> Prop) := Nrect P.
Definition Nrec (P : N -> Set) := Nrect P.
Theorem Nrec_base : forall P a f, Nrec P a f N0 = a.
Proof.
intros P a f; unfold Nrec; apply Nrect_base.
Qed.
Theorem Nrec_step : forall P a f n, Nrec P a f (Nsucc n) = f n (Nrec P a f n).
Proof.
intros P a f; unfold Nrec; apply Nrect_step.
Qed.
(** Properties of successor and predecessor *)
Theorem Npred_succ : forall n : N, Npred (Nsucc n) = n.
Proof.
destruct n as [| p]; simpl. reflexivity.
case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
intro H; false_hyp H Psucc_not_one.
Qed.
(** Properties of addition *)
Theorem Nplus_0_l : forall n:N, N0 + n = n.
Proof.
reflexivity.
Qed.
Theorem Nplus_0_r : forall n:N, n + N0 = n.
Proof.
destruct n; reflexivity.
Qed.
Theorem Nplus_comm : forall n m:N, n + m = m + n.
Proof.
intros.
destruct n; destruct m; simpl in |- *; try reflexivity.
rewrite Pplus_comm; reflexivity.
Qed.
Theorem Nplus_assoc : forall n m p:N, n + (m + p) = n + m + p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; try reflexivity.
destruct p; try reflexivity.
simpl in |- *; rewrite Pplus_assoc; reflexivity.
Qed.
Theorem Nplus_succ : forall n m:N, Nsucc n + m = Nsucc (n + m).
Proof.
destruct n; destruct m.
simpl in |- *; reflexivity.
unfold Nsucc, Nplus in |- *; rewrite <- Pplus_one_succ_l; reflexivity.
simpl in |- *; reflexivity.
simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
Qed.
Theorem Nsucc_0 : forall n : N, Nsucc n <> N0.
Proof.
intro n; elim n; simpl Nsucc; intros; discriminate.
Qed.
Theorem Nsucc_inj : forall n m:N, Nsucc n = Nsucc m -> n = m.
Proof.
destruct n; destruct m; simpl in |- *; intro H; reflexivity || injection H;
clear H; intro H.
symmetry in H; contradiction Psucc_not_one with p.
contradiction Psucc_not_one with p.
rewrite Psucc_inj with (1 := H); reflexivity.
Qed.
Theorem Nplus_reg_l : forall n m p:N, n + m = n + p -> m = p.
Proof.
intro n; pattern n in |- *; apply Nind; clear n; simpl in |- *.
trivial.
intros n IHn m p H0; do 2 rewrite Nplus_succ in H0.
apply IHn; apply Nsucc_inj; assumption.
Qed.
(** Properties of subtraction. *)
Lemma Nminus_N0_Nle : forall n n' : N, n - n' = N0 <-> n <= n'.
Proof.
destruct n as [| p]; destruct n' as [| q]; unfold Nle; simpl;
split; intro H; try discriminate; try reflexivity.
now elim H.
intro H1; apply Pminus_mask_Gt in H1. destruct H1 as [h [H1 _]].
rewrite H1 in H; discriminate.
case_eq (Pcompare p q Eq); intro H1; rewrite H1 in H; try now elim H.
assert (H2 : p = q); [now apply Pcompare_Eq_eq |]. now rewrite H2, Pminus_mask_diag.
now rewrite Pminus_mask_Lt.
Qed.
Theorem Nminus_0_r : forall n : N, n - N0 = n.
Proof.
now destruct n.
Qed.
Theorem Nminus_succ_r : forall n m : N, n - (Nsucc m) = Npred (n - m).
Proof.
destruct n as [| p]; destruct m as [| q]; try reflexivity.
now destruct p.
simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
Qed.
(** Properties of multiplication *)
Theorem Nmult_0_l : forall n:N, N0 * n = N0.
Proof.
reflexivity.
Qed.
Theorem Nmult_1_l : forall n:N, Npos 1 * n = n.
Proof.
destruct n; reflexivity.
Qed.
Theorem Nmult_Sn_m : forall n m : N, (Nsucc n) * m = m + n * m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl; auto.
rewrite Pmult_Sn_m; reflexivity.
Qed.
Theorem Nmult_1_r : forall n:N, n * Npos 1%positive = n.
Proof.
destruct n; simpl in |- *; try reflexivity.
rewrite Pmult_1_r; reflexivity.
Qed.
Theorem Nmult_comm : forall n m:N, n * m = m * n.
Proof.
intros.
destruct n; destruct m; simpl in |- *; try reflexivity.
rewrite Pmult_comm; reflexivity.
Qed.
Theorem Nmult_assoc : forall n m p:N, n * (m * p) = n * m * p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; try reflexivity.
destruct p; try reflexivity.
simpl in |- *; rewrite Pmult_assoc; reflexivity.
Qed.
Theorem Nmult_plus_distr_r : forall n m p:N, (n + m) * p = n * p + m * p.
Proof.
intros.
destruct n; try reflexivity.
destruct m; destruct p; try reflexivity.
simpl in |- *; rewrite Pmult_plus_distr_r; reflexivity.
Qed.
Theorem Nmult_reg_r : forall n m p:N, p <> N0 -> n * p = m * p -> n = m.
Proof.
destruct p; intros Hp H.
contradiction Hp; reflexivity.
destruct n; destruct m; reflexivity || (try discriminate H).
injection H; clear H; intro H; rewrite Pmult_reg_r with (1 := H); reflexivity.
Qed.
(** Properties of boolean order. *)
Lemma Neqb_eq : forall n m, Neqb n m = true <-> n=m.
Proof.
destruct n as [|n], m as [|m]; simpl; split; auto; try discriminate.
intros; f_equal. apply (Peqb_eq n m); auto.
intros. apply (Peqb_eq n m). congruence.
Qed.
(** Properties of comparison *)
Lemma Ncompare_refl : forall n, (n ?= n) = Eq.
Proof.
destruct n; simpl; auto.
apply Pcompare_refl.
Qed.
Theorem Ncompare_Eq_eq : forall n m:N, (n ?= m) = Eq -> n = m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
reflexivity || (try discriminate H).
rewrite (Pcompare_Eq_eq n m H); reflexivity.
Qed.
Theorem Ncompare_eq_correct : forall n m:N, (n ?= m) = Eq <-> n = m.
Proof.
split; intros;
[ apply Ncompare_Eq_eq; auto | subst; apply Ncompare_refl ].
Qed.
Lemma Ncompare_antisym : forall n m, CompOpp (n ?= m) = (m ?= n).
Proof.
destruct n; destruct m; simpl; auto.
exact (Pcompare_antisym p p0 Eq).
Qed.
Lemma Ngt_Nlt : forall n m, n > m -> m < n.
Proof.
unfold Ngt, Nlt; intros n m GT.
rewrite <- Ncompare_antisym, GT; reflexivity.
Qed.
Theorem Nlt_irrefl : forall n : N, ~ n < n.
Proof.
intro n; unfold Nlt; now rewrite Ncompare_refl.
Qed.
Theorem Nlt_trans : forall n m q, n < m -> m < q -> n < q.
Proof.
destruct n;
destruct m; try discriminate;
destruct q; try discriminate; auto.
eapply Plt_trans; eauto.
Qed.
Theorem Nlt_not_eq : forall n m, n < m -> ~ n = m.
Proof.
intros n m LT EQ. subst m. elim (Nlt_irrefl n); auto.
Qed.
Theorem Ncompare_n_Sm :
forall n m : N, Ncompare n (Nsucc m) = Lt <-> Ncompare n m = Lt \/ n = m.
Proof.
intros n m; split; destruct n as [| p]; destruct m as [| q]; simpl; auto.
destruct p; simpl; intros; discriminate.
pose proof (Pcompare_p_Sq p q) as (?,_).
assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
intros H; destruct H; discriminate.
pose proof (Pcompare_p_Sq p q) as (_,?);
assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
Qed.
Lemma Nle_lteq : forall x y, x <= y <-> x < y \/ x=y.
Proof.
unfold Nle, Nlt; intros.
generalize (Ncompare_eq_correct x y).
destruct (x ?= y); intuition; discriminate.
Qed.
Lemma Ncompare_spec : forall x y, CompSpec eq Nlt x y (Ncompare x y).
Proof.
intros.
destruct (Ncompare x y) as [ ]_eqn; constructor; auto.
apply Ncompare_Eq_eq; auto.
apply Ngt_Nlt; auto.
Qed.
(** 0 is the least natural number *)
Theorem Ncompare_0 : forall n : N, Ncompare n N0 <> Lt.
Proof.
destruct n; discriminate.
Qed.
(** Dividing by 2 *)
Definition Ndiv2 (n:N) :=
match n with
| N0 => N0
| Npos 1 => N0
| Npos (xO p) => Npos p
| Npos (xI p) => Npos p
end.
Lemma Ndouble_div2 : forall n:N, Ndiv2 (Ndouble n) = n.
Proof.
destruct n; trivial.
Qed.
Lemma Ndouble_plus_one_div2 :
forall n:N, Ndiv2 (Ndouble_plus_one n) = n.
Proof.
destruct n; trivial.
Qed.
Lemma Ndouble_inj : forall n m, Ndouble n = Ndouble m -> n = m.
Proof.
intros. rewrite <- (Ndouble_div2 n). rewrite H. apply Ndouble_div2.
Qed.
Lemma Ndouble_plus_one_inj :
forall n m, Ndouble_plus_one n = Ndouble_plus_one m -> n = m.
Proof.
intros. rewrite <- (Ndouble_plus_one_div2 n). rewrite H. apply Ndouble_plus_one_div2.
Qed.
|