1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(** * MSetGenTree : sets via generic trees
This module factorizes common parts in implementations
of finite sets as AVL trees and as Red-Black trees. The nodes
of the trees defined here include an generic information
parameter, that will be the heigth in AVL trees and the color
in Red-Black trees. Without more details here about these
information parameters, trees here are not known to be
well-balanced, but simply binary-search-trees.
The operations we could define and prove correct here are the
one that do not build non-empty trees, but only analyze them :
- empty is_empty
- mem
- compare equal subset
- fold cardinal elements
- for_all exists_
- min_elt max_elt choose
*)
Require Import Orders OrdersFacts MSetInterface NPeano.
Local Open Scope list_scope.
Local Open Scope lazy_bool_scope.
(* For nicer extraction, we create induction principles
only when needed *)
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Module Type InfoTyp.
Parameter t : Set.
End InfoTyp.
(** * Ops : the pure functions *)
Module Type Ops (X:OrderedType)(Info:InfoTyp).
Definition elt := X.t.
Hint Transparent elt.
Inductive tree : Type :=
| Leaf : tree
| Node : Info.t -> tree -> X.t -> tree -> tree.
(** ** The empty set and emptyness test *)
Definition empty := Leaf.
Definition is_empty t :=
match t with
| Leaf => true
| _ => false
end.
(** ** Membership test *)
(** The [mem] function is deciding membership. It exploits the
binary search tree invariant to achieve logarithmic complexity. *)
Fixpoint mem x t :=
match t with
| Leaf => false
| Node _ l k r =>
match X.compare x k with
| Lt => mem x l
| Eq => true
| Gt => mem x r
end
end.
(** ** Minimal, maximal, arbitrary elements *)
Fixpoint min_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ Leaf x r => Some x
| Node _ l x r => min_elt l
end.
Fixpoint max_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ l x Leaf => Some x
| Node _ l x r => max_elt r
end.
Definition choose := min_elt.
(** ** Iteration on elements *)
Fixpoint fold {A: Type} (f: elt -> A -> A) (t: tree) (base: A) : A :=
match t with
| Leaf => base
| Node _ l x r => fold f r (f x (fold f l base))
end.
Fixpoint elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => elements_aux (x :: elements_aux acc r) l
end.
Definition elements := elements_aux nil.
Fixpoint rev_elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => rev_elements_aux (x :: rev_elements_aux acc l) r
end.
Definition rev_elements := rev_elements_aux nil.
Fixpoint cardinal (s : tree) : nat :=
match s with
| Leaf => 0
| Node _ l _ r => S (cardinal l + cardinal r)
end.
Fixpoint maxdepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (max (maxdepth l) (maxdepth r))
end.
Fixpoint mindepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (min (mindepth l) (mindepth r))
end.
(** ** Testing universal or existential properties. *)
(** We do not use the standard boolean operators of Coq,
but lazy ones. *)
Fixpoint for_all (f:elt->bool) s := match s with
| Leaf => true
| Node _ l x r => f x &&& for_all f l &&& for_all f r
end.
Fixpoint exists_ (f:elt->bool) s := match s with
| Leaf => false
| Node _ l x r => f x ||| exists_ f l ||| exists_ f r
end.
(** ** Comparison of trees *)
(** The algorithm here has been suggested by Xavier Leroy,
and transformed into c.p.s. by Benjamin Grégoire.
The original ocaml code (with non-structural recursive calls)
has also been formalized (thanks to Function+measure), see
[ocaml_compare] in [MSetFullAVL]. The following code with
continuations computes dramatically faster in Coq, and
should be almost as efficient after extraction.
*)
(** Enumeration of the elements of a tree. This corresponds
to the "samefringe" notion in the litterature. *)
Inductive enumeration :=
| End : enumeration
| More : elt -> tree -> enumeration -> enumeration.
(** [cons t e] adds the elements of tree [t] on the head of
enumeration [e]. *)
Fixpoint cons s e : enumeration :=
match s with
| Leaf => e
| Node _ l x r => cons l (More x r e)
end.
(** One step of comparison of elements *)
Definition compare_more x1 (cont:enumeration->comparison) e2 :=
match e2 with
| End => Gt
| More x2 r2 e2 =>
match X.compare x1 x2 with
| Eq => cont (cons r2 e2)
| Lt => Lt
| Gt => Gt
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:enumeration->comparison) e2 :=
match s1 with
| Leaf => cont e2
| Node _ l1 x1 r1 =>
compare_cont l1 (compare_more x1 (compare_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition compare_end e2 :=
match e2 with End => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare s1 s2 := compare_cont s1 compare_end (cons s2 End).
Definition equal s1 s2 :=
match compare s1 s2 with Eq => true | _ => false end.
(** ** Subset test *)
(** In ocaml, recursive calls are made on "half-trees" such as
(Node _ l1 x1 Leaf) and (Node _ Leaf x1 r1). Instead of these
non-structural calls, we propose here two specialized functions
for these situations. This version should be almost as efficient
as the one of ocaml (closures as arguments may slow things a bit),
it is simply less compact. The exact ocaml version has also been
formalized (thanks to Function+measure), see [ocaml_subset] in
[MSetFullAVL].
*)
Fixpoint subsetl (subset_l1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_l1 l2
| Lt => subsetl subset_l1 x1 l2
| Gt => mem x1 r2 &&& subset_l1 s2
end
end.
Fixpoint subsetr (subset_r1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_r1 r2
| Lt => mem x1 l2 &&& subset_r1 s2
| Gt => subsetr subset_r1 x1 r2
end
end.
Fixpoint subset s1 s2 : bool := match s1, s2 with
| Leaf, _ => true
| Node _ _ _ _, Leaf => false
| Node _ l1 x1 r1, Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset l1 l2 &&& subset r1 r2
| Lt => subsetl (subset l1) x1 l2 &&& subset r1 s2
| Gt => subsetr (subset r1) x1 r2 &&& subset l1 s2
end
end.
End Ops.
(** * Props : correctness proofs of these generic operations *)
Module Type Props (X:OrderedType)(Info:InfoTyp)(Import M:Ops X Info).
(** ** Occurrence in a tree *)
Inductive InT (x : elt) : tree -> Prop :=
| IsRoot : forall c l r y, X.eq x y -> InT x (Node c l y r)
| InLeft : forall c l r y, InT x l -> InT x (Node c l y r)
| InRight : forall c l r y, InT x r -> InT x (Node c l y r).
Definition In := InT.
(** ** Some shortcuts *)
Definition Equal s s' := forall a : elt, InT a s <-> InT a s'.
Definition Subset s s' := forall a : elt, InT a s -> InT a s'.
Definition Empty s := forall a : elt, ~ InT a s.
Definition For_all (P : elt -> Prop) s := forall x, InT x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, InT x s /\ P x.
(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
Definition lt_tree x s := forall y, InT y s -> X.lt y x.
Definition gt_tree x s := forall y, InT y s -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : tree -> Prop :=
| BSLeaf : bst Leaf
| BSNode : forall c x l r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (Node c l x r).
(** [bst] is the (decidable) invariant our trees will have to satisfy. *)
Definition IsOk := bst.
Class Ok (s:tree) : Prop := ok : bst s.
Instance bst_Ok s (Hs : bst s) : Ok s := { ok := Hs }.
Fixpoint ltb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Gt => ltb_tree x l && ltb_tree x r
| _ => false
end
end.
Fixpoint gtb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Lt => gtb_tree x l && gtb_tree x r
| _ => false
end
end.
Fixpoint isok s :=
match s with
| Leaf => true
| Node _ l x r => isok l && isok r && ltb_tree x l && gtb_tree x r
end.
(** ** Known facts about ordered types *)
Module Import MX := OrderedTypeFacts X.
(** ** Automation and dedicated tactics *)
Scheme tree_ind := Induction for tree Sort Prop.
Scheme bst_ind := Induction for bst Sort Prop.
Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans @ok.
Local Hint Immediate MX.eq_sym.
Local Hint Unfold In lt_tree gt_tree.
Local Hint Constructors InT bst.
Local Hint Unfold Ok.
(** Automatic treatment of [Ok] hypothesis *)
Ltac clear_inversion H := inversion H; clear H; subst.
Ltac inv_ok := match goal with
| H:Ok (Node _ _ _ _) |- _ => clear_inversion H; inv_ok
| H:Ok Leaf |- _ => clear H; inv_ok
| H:bst ?x |- _ => change (Ok x) in H; inv_ok
| _ => idtac
end.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node _ _ _ _))] *)
Ltac is_tree_constr c :=
match c with
| Leaf => idtac
| Node _ _ _ _ => idtac
| _ => fail
end.
Ltac invtree f :=
match goal with
| H:f ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| _ => idtac
end.
Ltac inv := inv_ok; invtree InT.
Ltac intuition_in := repeat progress (intuition; inv).
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with
| U: lt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| U: gt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
(** [isok] is indeed a decision procedure for [Ok] *)
Lemma ltb_tree_iff : forall x s, lt_tree x s <-> ltb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
unfold lt_tree; intuition_in.
elim_compare x y.
split; intros; try discriminate. assert (X.lt y x) by auto. order.
split; intros; try discriminate. assert (X.lt y x) by auto. order.
rewrite !andb_true_iff, <-IHl, <-IHr.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gtb_tree_iff : forall x s, gt_tree x s <-> gtb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
unfold gt_tree; intuition_in.
elim_compare x y.
split; intros; try discriminate. assert (X.lt x y) by auto. order.
rewrite !andb_true_iff, <-IHl, <-IHr.
unfold gt_tree; intuition_in; order.
split; intros; try discriminate. assert (X.lt x y) by auto. order.
Qed.
Lemma isok_iff : forall s, Ok s <-> isok s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
intuition_in.
rewrite !andb_true_iff, <- IHl, <-IHr, <- ltb_tree_iff, <- gtb_tree_iff.
intuition_in.
Qed.
Instance isok_Ok s : isok s = true -> Ok s | 10.
Proof. intros; apply <- isok_iff; auto. Qed.
(** ** Basic results about [In] *)
Lemma In_1 :
forall s x y, X.eq x y -> InT x s -> InT y s.
Proof.
induction s; simpl; intuition_in; eauto.
Qed.
Local Hint Immediate In_1.
Instance In_compat : Proper (X.eq==>eq==>iff) InT.
Proof.
apply proper_sym_impl_iff_2; auto with *.
repeat red; intros; subst. apply In_1 with x; auto.
Qed.
Lemma In_node_iff :
forall c l x r y,
InT y (Node c l x r) <-> InT y l \/ X.eq y x \/ InT y r.
Proof.
intuition_in.
Qed.
Lemma In_leaf_iff : forall x, InT x Leaf <-> False.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x : elt, lt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma gt_leaf : forall x : elt, gt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma lt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node i l y r).
Proof.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node i l y r).
Proof.
unfold gt_tree; intuition_in; order.
Qed.
Local Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
Lemma lt_tree_not_in :
forall (x : elt) (t : tree), lt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall t, lt_tree x t -> lt_tree y t.
Proof.
eauto.
Qed.
Lemma gt_tree_not_in :
forall (x : elt) (t : tree), gt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall t, gt_tree x t -> gt_tree y t.
Proof.
eauto.
Qed.
Instance lt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) lt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
Instance gt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) gt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
Local Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
Ltac induct s x :=
induction s as [|i l IHl x' r IHr]; simpl; intros;
[|elim_compare x x'; intros; inv].
Ltac auto_tc := auto with typeclass_instances.
Ltac ok :=
inv; change bst with Ok in *;
match goal with
| |- Ok (Node _ _ _ _) => constructor; auto_tc; ok
| |- lt_tree _ (Node _ _ _ _) => apply lt_tree_node; ok
| |- gt_tree _ (Node _ _ _ _) => apply gt_tree_node; ok
| _ => eauto with typeclass_instances
end.
(** ** Empty set *)
Lemma empty_spec : Empty empty.
Proof.
intros x H. inversion H.
Qed.
Instance empty_ok : Ok empty.
Proof.
auto.
Qed.
(** ** Emptyness test *)
Lemma is_empty_spec : forall s, is_empty s = true <-> Empty s.
Proof.
destruct s as [|c r x l]; simpl; auto.
- split; auto. intros _ x H. inv.
- split; auto. try discriminate. intro H; elim (H x); auto.
Qed.
(** ** Membership *)
Lemma mem_spec : forall s x `{Ok s}, mem x s = true <-> InT x s.
Proof.
split.
- induct s x; now auto.
- induct s x; intuition_in; order.
Qed.
(** ** Minimal and maximal elements *)
Functional Scheme min_elt_ind := Induction for min_elt Sort Prop.
Functional Scheme max_elt_ind := Induction for max_elt Sort Prop.
Lemma min_elt_spec1 s x : min_elt s = Some x -> InT x s.
Proof.
functional induction (min_elt s); auto; inversion 1; auto.
Qed.
Lemma min_elt_spec2 s x y `{Ok s} :
min_elt s = Some x -> InT y s -> ~ X.lt y x.
Proof.
revert y.
functional induction (min_elt s);
try rename _x0 into r; try rename _x2 into l1, _x3 into x1, _x4 into r1.
- discriminate.
- intros y V W.
inversion V; clear V; subst.
inv; order.
- intros; inv; auto.
* assert (X.lt x x0) by (apply H8; apply min_elt_spec1; auto).
order.
* assert (X.lt x1 x0) by auto.
assert (~X.lt x1 x) by auto.
order.
Qed.
Lemma min_elt_spec3 s : min_elt s = None -> Empty s.
Proof.
functional induction (min_elt s).
red; red; inversion 2.
inversion 1.
intro H0.
destruct (IHo H0 _x3); auto.
Qed.
Lemma max_elt_spec1 s x : max_elt s = Some x -> InT x s.
Proof.
functional induction (max_elt s); auto; inversion 1; auto.
Qed.
Lemma max_elt_spec2 s x y `{Ok s} :
max_elt s = Some x -> InT y s -> ~ X.lt x y.
Proof.
revert y.
functional induction (max_elt s);
try rename _x0 into r; try rename _x2 into l1, _x3 into x1, _x4 into r1.
- discriminate.
- intros y V W.
inversion V; clear V; subst.
inv; order.
- intros; inv; auto.
* assert (X.lt x0 x) by (apply H9; apply max_elt_spec1; auto).
order.
* assert (X.lt x0 x1) by auto.
assert (~X.lt x x1) by auto.
order.
Qed.
Lemma max_elt_spec3 s : max_elt s = None -> Empty s.
Proof.
functional induction (max_elt s).
red; red; inversion 2.
inversion 1.
intro H0.
destruct (IHo H0 _x3); auto.
Qed.
Lemma choose_spec1 : forall s x, choose s = Some x -> InT x s.
Proof.
exact min_elt_spec1.
Qed.
Lemma choose_spec2 : forall s, choose s = None -> Empty s.
Proof.
exact min_elt_spec3.
Qed.
Lemma choose_spec3 : forall s s' x x' `{Ok s, Ok s'},
choose s = Some x -> choose s' = Some x' ->
Equal s s' -> X.eq x x'.
Proof.
unfold choose, Equal; intros s s' x x' Hb Hb' Hx Hx' H.
assert (~X.lt x x').
apply min_elt_spec2 with s'; auto.
rewrite <-H; auto using min_elt_spec1.
assert (~X.lt x' x).
apply min_elt_spec2 with s; auto.
rewrite H; auto using min_elt_spec1.
elim_compare x x'; intuition.
Qed.
(** ** Elements *)
Lemma elements_spec1' : forall s acc x,
InA X.eq x (elements_aux acc s) <-> InT x s \/ InA X.eq x acc.
Proof.
induction s as [ | c l Hl x r Hr ]; simpl; auto.
intuition.
inversion H0.
intros.
rewrite Hl.
destruct (Hr acc x0); clear Hl Hr.
intuition; inversion_clear H3; intuition.
Qed.
Lemma elements_spec1 : forall s x, InA X.eq x (elements s) <-> InT x s.
Proof.
intros; generalize (elements_spec1' s nil x); intuition.
inversion_clear H0.
Qed.
Lemma elements_spec2' : forall s acc `{Ok s}, sort X.lt acc ->
(forall x y : elt, InA X.eq x acc -> InT y s -> X.lt y x) ->
sort X.lt (elements_aux acc s).
Proof.
induction s as [ | c l Hl y r Hr]; simpl; intuition.
inv.
apply Hl; auto.
constructor.
apply Hr; auto.
eapply InA_InfA; eauto with *.
intros.
destruct (elements_spec1' r acc y0); intuition.
intros.
inversion_clear H.
order.
destruct (elements_spec1' r acc x); intuition eauto.
Qed.
Lemma elements_spec2 : forall s `(Ok s), sort X.lt (elements s).
Proof.
intros; unfold elements; apply elements_spec2'; auto.
intros; inversion H0.
Qed.
Local Hint Resolve elements_spec2.
Lemma elements_spec2w : forall s `(Ok s), NoDupA X.eq (elements s).
Proof.
intros. eapply SortA_NoDupA; eauto with *.
Qed.
Lemma elements_aux_cardinal :
forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
Proof.
simple induction s; simpl; intuition.
rewrite <- H.
simpl.
rewrite <- H0. rewrite (Nat.add_comm (cardinal t0)).
now rewrite <- Nat.add_succ_r, Nat.add_assoc.
Qed.
Lemma elements_cardinal : forall s : tree, cardinal s = length (elements s).
Proof.
exact (fun s => elements_aux_cardinal s nil).
Qed.
Definition cardinal_spec (s:tree)(Hs:Ok s) := elements_cardinal s.
Lemma elements_app :
forall s acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma elements_node c l x r :
elements (Node c l x r) = elements l ++ x :: elements r.
Proof.
unfold elements; simpl.
now rewrite !elements_app, !app_nil_r.
Qed.
Lemma rev_elements_app :
forall s acc, rev_elements_aux acc s = rev_elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold rev_elements; simpl.
rewrite IHs1, 2 IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma rev_elements_node c l x r :
rev_elements (Node c l x r) = rev_elements r ++ x :: rev_elements l.
Proof.
unfold rev_elements; simpl.
now rewrite !rev_elements_app, !app_nil_r.
Qed.
Lemma rev_elements_rev s : rev_elements s = rev (elements s).
Proof.
induction s as [|c l IHl x r IHr]; trivial.
rewrite elements_node, rev_elements_node, IHl, IHr, rev_app_distr.
simpl. now rewrite !app_ass.
Qed.
(** The converse of [elements_spec2], used in MSetRBT *)
(* TODO: TO MIGRATE ELSEWHERE... *)
Lemma sorted_app_inv l1 l2 :
sort X.lt (l1++l2) ->
sort X.lt l1 /\ sort X.lt l2 /\
forall x1 x2, InA X.eq x1 l1 -> InA X.eq x2 l2 -> X.lt x1 x2.
Proof.
induction l1 as [|a1 l1 IHl1].
- simpl; repeat split; auto.
intros. now rewrite InA_nil in *.
- simpl. inversion_clear 1 as [ | ? ? Hs Hhd ].
destruct (IHl1 Hs) as (H1 & H2 & H3).
repeat split.
* constructor; auto.
destruct l1; simpl in *; auto; inversion_clear Hhd; auto.
* trivial.
* intros x1 x2 Hx1 Hx2. rewrite InA_cons in Hx1. destruct Hx1.
+ rewrite H.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=l1++l2); auto_tc.
rewrite InA_app_iff; auto_tc.
+ auto.
Qed.
Lemma elements_sort_ok s : sort X.lt (elements s) -> Ok s.
Proof.
induction s as [|c l IHl x r IHr].
- auto.
- rewrite elements_node.
intros H. destruct (sorted_app_inv _ _ H) as (H1 & H2 & H3).
inversion_clear H2.
constructor; ok.
* intros y Hy. apply H3.
+ now rewrite elements_spec1.
+ rewrite InA_cons. now left.
* intros y Hy.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=elements r); auto_tc.
now rewrite elements_spec1.
Qed.
(** ** [for_all] and [exists] *)
Lemma for_all_spec s f : Proper (X.eq==>eq) f ->
(for_all f s = true <-> For_all (fun x => f x = true) s).
Proof.
intros Hf; unfold For_all.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split; intros; inv; auto.
- rewrite <- !andb_lazy_alt, !andb_true_iff, IHl, IHr. clear IHl IHr.
intuition_in. eauto.
Qed.
Lemma exists_spec s f : Proper (X.eq==>eq) f ->
(exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof.
intros Hf; unfold Exists.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split.
* discriminate.
* intros (y,(H,_)); inv.
- rewrite <- !orb_lazy_alt, !orb_true_iff, IHl, IHr. clear IHl IHr.
split; [intros [[H|(y,(H,H'))]|(y,(H,H'))]|intros (y,(H,H'))].
* exists x; auto.
* exists y; auto.
* exists y; auto.
* inv; [left;left|left;right|right]; try (exists y); eauto.
Qed.
(** ** Fold *)
Lemma fold_spec' {A} (f : elt -> A -> A) (s : tree) (i : A) (acc : list elt) :
fold_left (flip f) (elements_aux acc s) i = fold_left (flip f) acc (fold f s i).
Proof.
revert i acc.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite IHl.
simpl. unfold flip at 2.
apply IHr.
Qed.
Lemma fold_spec (s:tree) {A} (i : A) (f : elt -> A -> A) :
fold f s i = fold_left (flip f) (elements s) i.
Proof.
revert i. unfold elements.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite fold_spec'.
rewrite IHr.
simpl; auto.
Qed.
(** ** Subset *)
Lemma subsetl_spec : forall subset_l1 l1 x1 c1 s2
`{Ok (Node c1 l1 x1 Leaf), Ok s2},
(forall s `{Ok s}, (subset_l1 s = true <-> Subset l1 s)) ->
(subsetl subset_l1 x1 s2 = true <-> Subset (Node c1 l1 x1 Leaf) s2 ).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite IHl2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
constructor 3. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subsetr_spec : forall subset_r1 r1 x1 c1 s2,
bst (Node c1 Leaf x1 r1) -> bst s2 ->
(forall s, bst s -> (subset_r1 s = true <-> Subset r1 s)) ->
(subsetr subset_r1 x1 s2 = true <-> Subset (Node c1 Leaf x1 r1) s2).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
constructor 2. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite IHr2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subset_spec : forall s1 s2 `{Ok s1, Ok s2},
(subset s1 s2 = true <-> Subset s1 s2).
Proof.
induction s1 as [|c1 l1 IHl1 x1 r1 IHr1]; simpl; intros.
unfold Subset; intuition_in.
destruct s2 as [|c2 l2 x2 r2]; simpl; intros.
unfold Subset; intuition_in; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
inv.
elim_compare x1 x2.
rewrite <-andb_lazy_alt, andb_true_iff, IHl1, IHr1 by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, IHr1 by auto.
rewrite (@subsetl_spec (subset l1) l1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, IHl1 by auto.
rewrite (@subsetr_spec (subset r1) r1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
(** ** Comparison *)
(** Relations [eq] and [lt] over trees *)
Module L := MSetInterface.MakeListOrdering X.
Definition eq := Equal.
Instance eq_equiv : Equivalence eq.
Proof. firstorder. Qed.
Lemma eq_Leq : forall s s', eq s s' <-> L.eq (elements s) (elements s').
Proof.
unfold eq, Equal, L.eq; intros.
setoid_rewrite elements_spec1; firstorder.
Qed.
Definition lt (s1 s2 : tree) : Prop :=
exists s1' s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
/\ L.lt (elements s1') (elements s2').
Instance lt_strorder : StrictOrder lt.
Proof.
split.
intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
assert (eqlistA X.eq (elements s1) (elements s2)).
apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s; auto. symmetry; auto.
rewrite H in L.
apply (StrictOrder_Irreflexive (elements s2)); auto.
intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
(s2'' & s3' & B2' & B3 & E2' & E3 & L23).
exists s1', s3'; do 4 (split; trivial).
assert (eqlistA X.eq (elements s2') (elements s2'')).
apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s2; auto. symmetry; auto.
transitivity (elements s2'); auto.
rewrite H; auto.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
intros s1 s2 E12 s3 s4 E34. split.
intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split. transitivity s1; auto. symmetry; auto.
split; auto. transitivity s3; auto. symmetry; auto.
intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split. transitivity s2; auto.
split; auto. transitivity s4; auto.
Qed.
(** Proof of the comparison algorithm *)
(** [flatten_e e] returns the list of elements of [e] i.e. the list
of elements actually compared *)
Fixpoint flatten_e (e : enumeration) : list elt := match e with
| End => nil
| More x t r => x :: elements t ++ flatten_e r
end.
Lemma flatten_e_elements :
forall l x r c e,
elements l ++ flatten_e (More x r e) = elements (Node c l x r) ++ flatten_e e.
Proof.
intros; simpl. now rewrite elements_node, app_ass.
Qed.
Lemma cons_1 : forall s e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; simpl; auto; intros.
rewrite IHs1; apply flatten_e_elements.
Qed.
(** Correctness of this comparison *)
Definition Cmp c x y := CompSpec L.eq L.lt x y c.
Local Hint Unfold Cmp flip.
Lemma compare_end_Cmp :
forall e2, Cmp (compare_end e2) nil (flatten_e e2).
Proof.
destruct e2; simpl; constructor; auto. reflexivity.
Qed.
Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
Cmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
(flatten_e (More x2 r2 e2)).
Proof.
simpl; intros; elim_compare x1 x2; simpl; red; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
Proof.
induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; simpl; intros; auto.
rewrite elements_node, app_ass; simpl.
apply Hl1; auto. clear e2. intros [|x2 r2 e2].
simpl; auto.
apply compare_more_Cmp.
rewrite <- cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2,
Cmp (compare s1 s2) (elements s1) (elements s2).
Proof.
intros; unfold compare.
rewrite (app_nil_end (elements s1)).
replace (elements s2) with (flatten_e (cons s2 End)) by
(rewrite cons_1; simpl; rewrite <- app_nil_end; auto).
apply compare_cont_Cmp; auto.
intros.
apply compare_end_Cmp; auto.
Qed.
Lemma compare_spec : forall s1 s2 `{Ok s1, Ok s2},
CompSpec eq lt s1 s2 (compare s1 s2).
Proof.
intros.
destruct (compare_Cmp s1 s2); constructor.
rewrite eq_Leq; auto.
intros; exists s1, s2; repeat split; auto.
intros; exists s2, s1; repeat split; auto.
Qed.
(** ** Equality test *)
Lemma equal_spec : forall s1 s2 `{Ok s1, Ok s2},
equal s1 s2 = true <-> eq s1 s2.
Proof.
unfold equal; intros s1 s2 B1 B2.
destruct (@compare_spec s1 s2 B1 B2) as [H|H|H];
split; intros H'; auto; try discriminate.
rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
Qed.
(** ** A few results about [mindepth] and [maxdepth] *)
Lemma mindepth_maxdepth s : mindepth s <= maxdepth s.
Proof.
induction s; simpl; auto.
rewrite <- Nat.succ_le_mono.
transitivity (mindepth s1). apply Nat.le_min_l.
transitivity (maxdepth s1). trivial. apply Nat.le_max_l.
Qed.
Lemma maxdepth_cardinal s : cardinal s < 2^(maxdepth s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_max_l.
* apply Nat.le_max_r.
Qed.
Lemma mindepth_cardinal s : 2^(mindepth s) <= S (cardinal s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_min_l.
* apply Nat.le_min_r.
Qed.
Lemma maxdepth_log_cardinal s : s <> Leaf ->
log2 (cardinal s) < maxdepth s.
Proof.
intros H.
apply Nat.log2_lt_pow2. destruct s; simpl; intuition.
apply maxdepth_cardinal.
Qed.
Lemma mindepth_log_cardinal s : mindepth s <= log2 (S (cardinal s)).
Proof.
apply Nat.log2_le_pow2. auto with arith.
apply mindepth_cardinal.
Qed.
End Props.
|