1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
(** * Finite sets library *)
(** This functor derives additional facts from [MSetInterface.S]. These
facts are mainly the specifications of [MSetInterface.S] written using
different styles: equivalence and boolean equalities.
Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)
Require Import DecidableTypeEx.
Require Export MSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
(** First, a functor for Weak Sets in functorial version. *)
Module WFactsOn (Import E : DecidableType)(Import M : WSetsOn E).
Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.
(** * Specifications written using implications :
this used to be the default interface. *)
Section ImplSpec.
Variable s s' : t.
Variable x y : elt.
Lemma In_1 : E.eq x y -> In x s -> In y s.
Proof. intros E; rewrite E; auto. Qed.
Lemma mem_1 : In x s -> mem x s = true.
Proof. intros; apply <- mem_spec; auto. Qed.
Lemma mem_2 : mem x s = true -> In x s.
Proof. intros; apply -> mem_spec; auto. Qed.
Lemma equal_1 : Equal s s' -> equal s s' = true.
Proof. intros; apply <- equal_spec; auto. Qed.
Lemma equal_2 : equal s s' = true -> Equal s s'.
Proof. intros; apply -> equal_spec; auto. Qed.
Lemma subset_1 : Subset s s' -> subset s s' = true.
Proof. intros; apply <- subset_spec; auto. Qed.
Lemma subset_2 : subset s s' = true -> Subset s s'.
Proof. intros; apply -> subset_spec; auto. Qed.
Lemma is_empty_1 : Empty s -> is_empty s = true.
Proof. intros; apply <- is_empty_spec; auto. Qed.
Lemma is_empty_2 : is_empty s = true -> Empty s.
Proof. intros; apply -> is_empty_spec; auto. Qed.
Lemma add_1 : E.eq x y -> In y (add x s).
Proof. intros; apply <- add_spec. auto with relations. Qed.
Lemma add_2 : In y s -> In y (add x s).
Proof. intros; apply <- add_spec; auto. Qed.
Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
Proof. rewrite add_spec. intros H [H'|H']; auto. elim H; auto with relations. Qed.
Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
Proof. intros; rewrite remove_spec; intuition. Qed.
Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
Proof. intros; apply <- remove_spec; auto with relations. Qed.
Lemma remove_3 : In y (remove x s) -> In y s.
Proof. rewrite remove_spec; intuition. Qed.
Lemma singleton_1 : In y (singleton x) -> E.eq x y.
Proof. rewrite singleton_spec; auto with relations. Qed.
Lemma singleton_2 : E.eq x y -> In y (singleton x).
Proof. rewrite singleton_spec; auto with relations. Qed.
Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
Proof. rewrite union_spec; auto. Qed.
Lemma union_2 : In x s -> In x (union s s').
Proof. rewrite union_spec; auto. Qed.
Lemma union_3 : In x s' -> In x (union s s').
Proof. rewrite union_spec; auto. Qed.
Lemma inter_1 : In x (inter s s') -> In x s.
Proof. rewrite inter_spec; intuition. Qed.
Lemma inter_2 : In x (inter s s') -> In x s'.
Proof. rewrite inter_spec; intuition. Qed.
Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
Proof. rewrite inter_spec; intuition. Qed.
Lemma diff_1 : In x (diff s s') -> In x s.
Proof. rewrite diff_spec; intuition. Qed.
Lemma diff_2 : In x (diff s s') -> ~ In x s'.
Proof. rewrite diff_spec; intuition. Qed.
Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
Proof. rewrite diff_spec; auto. Qed.
Variable f : elt -> bool.
Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
Lemma filter_1 : compatb f -> In x (filter f s) -> In x s.
Proof. intros P; rewrite filter_spec; intuition. Qed.
Lemma filter_2 : compatb f -> In x (filter f s) -> f x = true.
Proof. intros P; rewrite filter_spec; intuition. Qed.
Lemma filter_3 : compatb f -> In x s -> f x = true -> In x (filter f s).
Proof. intros P; rewrite filter_spec; intuition. Qed.
Lemma for_all_1 : compatb f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Proof. intros; apply <- for_all_spec; auto. Qed.
Lemma for_all_2 : compatb f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Proof. intros; apply -> for_all_spec; auto. Qed.
Lemma exists_1 : compatb f ->
Exists (fun x => f x = true) s -> exists_ f s = true.
Proof. intros; apply <- exists_spec; auto. Qed.
Lemma exists_2 : compatb f ->
exists_ f s = true -> Exists (fun x => f x = true) s.
Proof. intros; apply -> exists_spec; auto. Qed.
Lemma elements_1 : In x s -> InA E.eq x (elements s).
Proof. intros; apply <- elements_spec1; auto. Qed.
Lemma elements_2 : InA E.eq x (elements s) -> In x s.
Proof. intros; apply -> elements_spec1; auto. Qed.
End ImplSpec.
Notation empty_1 := empty_spec (only parsing).
Notation fold_1 := fold_spec (only parsing).
Notation cardinal_1 := cardinal_spec (only parsing).
Notation partition_1 := partition_spec1 (only parsing).
Notation partition_2 := partition_spec2 (only parsing).
Notation choose_1 := choose_spec1 (only parsing).
Notation choose_2 := choose_spec2 (only parsing).
Notation elements_3w := elements_spec2w (only parsing).
Hint Resolve mem_1 equal_1 subset_1 empty_1
is_empty_1 choose_1 choose_2 add_1 add_2 remove_1
remove_2 singleton_2 union_1 union_2 union_3
inter_3 diff_3 fold_1 filter_3 for_all_1 exists_1
partition_1 partition_2 elements_1 elements_3w
: set.
Hint Immediate In_1 mem_2 equal_2 subset_2 is_empty_2 add_3
remove_3 singleton_1 inter_1 inter_2 diff_1 diff_2
filter_1 filter_2 for_all_2 exists_2 elements_2
: set.
(** * Specifications written using equivalences :
this is now provided by the default interface. *)
Section IffSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
Proof.
intros E; rewrite E; intuition.
Qed.
Lemma mem_iff : In x s <-> mem x s = true.
Proof. apply iff_sym, mem_spec. Qed.
Lemma not_mem_iff : ~In x s <-> mem x s = false.
Proof.
rewrite <-mem_spec; destruct (mem x s); intuition.
Qed.
Lemma equal_iff : s[=]s' <-> equal s s' = true.
Proof. apply iff_sym, equal_spec. Qed.
Lemma subset_iff : s[<=]s' <-> subset s s' = true.
Proof. apply iff_sym, subset_spec. Qed.
Lemma empty_iff : In x empty <-> False.
Proof. intuition; apply (empty_spec H). Qed.
Lemma is_empty_iff : Empty s <-> is_empty s = true.
Proof. apply iff_sym, is_empty_spec. Qed.
Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
Proof. rewrite singleton_spec; intuition. Qed.
Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
Proof. rewrite add_spec; intuition. Qed.
Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
Proof. rewrite add_spec; intuition. elim H; auto with relations. Qed.
Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
Proof. rewrite remove_spec; intuition. Qed.
Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
Proof. rewrite remove_spec; intuition. Qed.
Variable f : elt -> bool.
Lemma for_all_iff : Proper (E.eq==>Logic.eq) f ->
(For_all (fun x => f x = true) s <-> for_all f s = true).
Proof. intros; apply iff_sym, for_all_spec; auto. Qed.
Lemma exists_iff : Proper (E.eq==>Logic.eq) f ->
(Exists (fun x => f x = true) s <-> exists_ f s = true).
Proof. intros; apply iff_sym, exists_spec; auto. Qed.
Lemma elements_iff : In x s <-> InA E.eq x (elements s).
Proof. apply iff_sym, elements_spec1. Qed.
End IffSpec.
Notation union_iff := union_spec (only parsing).
Notation inter_iff := inter_spec (only parsing).
Notation diff_iff := diff_spec (only parsing).
Notation filter_iff := filter_spec (only parsing).
(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
Ltac set_iff :=
repeat (progress (
rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
|| rewrite union_iff || rewrite inter_iff || rewrite diff_iff
|| rewrite empty_iff)).
(** * Specifications written using boolean predicates *)
Section BoolSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma mem_b : E.eq x y -> mem x s = mem y s.
Proof.
intros.
generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
destruct (mem x s); destruct (mem y s); intuition.
Qed.
Lemma empty_b : mem y empty = false.
Proof.
generalize (empty_iff y)(mem_iff empty y).
destruct (mem y empty); intuition.
Qed.
Lemma add_b : mem y (add x s) = eqb x y || mem y s.
Proof.
generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
Proof.
intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
Proof.
generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
Qed.
Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
Proof.
intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
destruct (mem y s); destruct (mem y (remove x s)); intuition.
Qed.
Lemma singleton_b : mem y (singleton x) = eqb x y.
Proof.
generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
Qed.
Lemma union_b : mem x (union s s') = mem x s || mem x s'.
Proof.
generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
Qed.
Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
Proof.
generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
Qed.
Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
Proof.
generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
Qed.
Lemma elements_b : mem x s = existsb (eqb x) (elements s).
Proof.
generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
rewrite InA_alt.
destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
symmetry.
rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
exists a; intuition.
unfold eqb; destruct (eq_dec x a); auto.
rewrite <- H.
rewrite H0.
destruct H1 as (H1,_).
destruct H1 as (a,(Ha1,Ha2)); [intuition|].
exists a; intuition.
unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
Qed.
Variable f : elt->bool.
Lemma filter_b : Proper (E.eq==>Logic.eq) f -> mem x (filter f s) = mem x s && f x.
Proof.
intros.
generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
Qed.
Lemma for_all_b : Proper (E.eq==>Logic.eq) f ->
for_all f s = forallb f (elements s).
Proof.
intros.
generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
unfold For_all.
destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
rewrite (H2 x0) in H3.
rewrite (InA_alt E.eq x0 (elements s)) in H3.
destruct H3 as (a,(Ha1,Ha2)).
rewrite (H _ _ Ha1).
apply H0; auto.
symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
rewrite H2.
rewrite InA_alt. exists x0; split; auto with relations.
Qed.
Lemma exists_b : Proper (E.eq==>Logic.eq) f ->
exists_ f s = existsb f (elements s).
Proof.
intros.
generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
unfold Exists.
destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
exists a; split; auto.
rewrite H2; rewrite InA_alt; exists a; auto with relations.
symmetry.
rewrite H0.
destruct H1 as (_,H1).
destruct H1 as (a,(Ha1,Ha2)); auto.
rewrite (H2 a) in Ha1.
rewrite (InA_alt E.eq a (elements s)) in Ha1.
destruct Ha1 as (b,(Hb1,Hb2)).
exists b; auto.
rewrite <- (H _ _ Hb1); auto.
Qed.
End BoolSpec.
(** * Declarations of morphisms with respects to [E.eq] and [Equal] *)
Instance In_m : Proper (E.eq==>Equal==>iff) In.
Proof.
unfold Equal; intros x y H s s' H0.
rewrite (In_eq_iff s H); auto.
Qed.
Instance Empty_m : Proper (Equal==>iff) Empty.
Proof.
repeat red; unfold Empty; intros s s' E.
setoid_rewrite E; auto.
Qed.
Instance is_empty_m : Proper (Equal==>Logic.eq) is_empty.
Proof.
intros s s' H.
generalize (is_empty_iff s). rewrite H at 1. rewrite is_empty_iff.
destruct (is_empty s); destruct (is_empty s'); intuition.
Qed.
Instance mem_m : Proper (E.eq==>Equal==>Logic.eq) mem.
Proof.
intros x x' Hx s s' Hs.
generalize (mem_iff s x). rewrite Hs, Hx at 1; rewrite mem_iff.
destruct (mem x s), (mem x' s'); intuition.
Qed.
Instance singleton_m : Proper (E.eq==>Equal) singleton.
Proof.
intros x y H a. rewrite !singleton_iff, H; intuition.
Qed.
Instance add_m : Proper (E.eq==>Equal==>Equal) add.
Proof.
intros x x' Hx s s' Hs a. rewrite !add_iff, Hx, Hs; intuition.
Qed.
Instance remove_m : Proper (E.eq==>Equal==>Equal) remove.
Proof.
intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx, Hs; intuition.
Qed.
Instance union_m : Proper (Equal==>Equal==>Equal) union.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition.
Qed.
Instance inter_m : Proper (Equal==>Equal==>Equal) inter.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition.
Qed.
Instance diff_m : Proper (Equal==>Equal==>Equal) diff.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition.
Qed.
Instance Subset_m : Proper (Equal==>Equal==>iff) Subset.
Proof.
unfold Equal, Subset; firstorder.
Qed.
Instance subset_m : Proper (Equal==>Equal==>Logic.eq) subset.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2.
generalize (subset_iff s1 s2). rewrite Hs1, Hs2 at 1. rewrite subset_iff.
destruct (subset s1 s2); destruct (subset s1' s2'); intuition.
Qed.
Instance equal_m : Proper (Equal==>Equal==>Logic.eq) equal.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2.
generalize (equal_iff s1 s2). rewrite Hs1,Hs2 at 1. rewrite equal_iff.
destruct (equal s1 s2); destruct (equal s1' s2'); intuition.
Qed.
Instance SubsetSetoid : PreOrder Subset. (* reflexive + transitive *)
Proof. firstorder. Qed.
Definition Subset_refl := @PreOrder_Reflexive _ _ SubsetSetoid.
Definition Subset_trans := @PreOrder_Transitive _ _ SubsetSetoid.
Instance In_s_m : Morphisms.Proper (E.eq ==> Subset ++> impl) In | 1.
Proof.
simpl_relation. eauto with set.
Qed.
Instance Empty_s_m : Proper (Subset-->impl) Empty.
Proof. firstorder. Qed.
Instance add_s_m : Proper (E.eq==>Subset++>Subset) add.
Proof.
intros x x' Hx s s' Hs a. rewrite !add_iff, Hx; intuition.
Qed.
Instance remove_s_m : Proper (E.eq==>Subset++>Subset) remove.
Proof.
intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx; intuition.
Qed.
Instance union_s_m : Proper (Subset++>Subset++>Subset) union.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition.
Qed.
Instance inter_s_m : Proper (Subset++>Subset++>Subset) inter.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition.
Qed.
Instance diff_s_m : Proper (Subset++>Subset-->Subset) diff.
Proof.
intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition.
Qed.
(* [fold], [filter], [for_all], [exists_] and [partition] requires
some knowledge on [f] in order to be known as morphisms. *)
Generalizable Variables f.
Instance filter_equal : forall `(Proper _ (E.eq==>Logic.eq) f),
Proper (Equal==>Equal) (filter f).
Proof.
intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition.
Qed.
Instance filter_subset : forall `(Proper _ (E.eq==>Logic.eq) f),
Proper (Subset==>Subset) (filter f).
Proof.
intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition.
Qed.
Lemma filter_ext : forall f f', Proper (E.eq==>Logic.eq) f -> (forall x, f x = f' x) ->
forall s s', s[=]s' -> filter f s [=] filter f' s'.
Proof.
intros f f' Hf Hff' s s' Hss' x. rewrite 2 filter_iff; auto.
rewrite Hff', Hss'; intuition.
red; red; intros; rewrite <- 2 Hff'; auto.
Qed.
(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
structures on [list elt] and [option elt]. *)
(* Later:
Add Morphism cardinal ; cardinal_m.
*)
End WFactsOn.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Facts] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WFacts]. *)
Module WFacts (M:WSets) := WFactsOn M.E M.
Module Facts := WFacts.
|