summaryrefslogtreecommitdiff
path: root/theories/Logic/IndefiniteDescription.v
blob: 05c049528001118e67889e201d992296ccb029fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

(** This file provides a constructive form of indefinite description that
    allows to build choice functions; this is weaker than Hilbert's
    epsilon operator (which implies weakly classical properties) but
    stronger than the axiom of choice (which cannot be used outside
    the context of a theorem proof). *)

Require Import ChoiceFacts.

Set Implicit Arguments.

Axiom constructive_indefinite_description :
  forall (A : Type) (P : A->Prop),
    (exists x, P x) -> { x : A | P x }.

Lemma constructive_definite_description :
  forall (A : Type) (P : A->Prop),
    (exists! x, P x) -> { x : A | P x }.
Proof.
  intros; apply constructive_indefinite_description; firstorder.
Qed.

Lemma functional_choice :
  forall (A B : Type) (R:A->B->Prop),
    (forall x : A, exists y : B, R x y) ->
    (exists f : A->B, forall x : A, R x (f x)).
Proof.
  apply constructive_indefinite_descr_fun_choice.
  exact constructive_indefinite_description.
Qed.