1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It derives
the consequence of axiomatizing the invariance by substitution of
reflexive equality proofs and shows the equivalence between the 4
following statements
- Invariance by Substitution of Reflexive Equality Proofs.
- Injectivity of Dependent Equality
- Uniqueness of Identity Proofs
- Uniqueness of Reflexive Identity Proofs
- Streicher's Axiom K
These statements are independent of the calculus of constructions [2].
References:
[1] T. Streicher, Semantical Investigations into Intensional Type Theory,
Habilitationsschrift, LMU München, 1993.
[2] M. Hofmann, T. Streicher, The groupoid interpretation of type theory,
Proceedings of the meeting Twenty-five years of constructive
type theory, Venice, Oxford University Press, 1998
Table of contents:
1. Definition of dependent equality and equivalence with equality
2. Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K
3. Definition of the functor that builds properties of dependent
equalities assuming axiom eq_rect_eq
*)
(************************************************************************)
(** * Definition of dependent equality and equivalence with equality of dependent pairs *)
Section Dependent_Equality.
Variable U : Type.
Variable P : U -> Type.
(** Dependent equality *)
Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop :=
eq_dep_intro : eq_dep p x p x.
Hint Constructors eq_dep: core.
Lemma eq_dep_refl : forall (p:U) (x:P p), eq_dep p x p x.
Proof eq_dep_intro.
Lemma eq_dep_sym :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x.
Proof.
destruct 1; auto.
Qed.
Hint Immediate eq_dep_sym: core.
Lemma eq_dep_trans :
forall (p q r:U) (x:P p) (y:P q) (z:P r),
eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z.
Proof.
destruct 1; auto.
Qed.
Scheme eq_indd := Induction for eq Sort Prop.
(** Equivalent definition of dependent equality expressed as a non
dependent inductive type *)
Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop :=
eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y.
Lemma eq_dep1_dep :
forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y.
Proof.
destruct 1 as (eq_qp, H).
destruct eq_qp using eq_indd.
rewrite H.
apply eq_dep_intro.
Qed.
Lemma eq_dep_dep1 :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
apply eq_dep1_intro with (refl_equal p).
simpl in |- *; trivial.
Qed.
End Dependent_Equality.
Implicit Arguments eq_dep [U P].
Implicit Arguments eq_dep1 [U P].
(** Dependent equality is equivalent to equality on dependent pairs *)
Lemma eq_sigT_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y -> eq_dep p x q y.
Proof.
intros.
dependent rewrite H.
apply eq_dep_intro.
Qed.
Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
Lemma equiv_eqex_eqdep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y <-> eq_dep p x q y.
Proof.
split.
(* -> *)
apply eq_sigT_eq_dep.
(* <- *)
destruct 1; reflexivity.
Qed.
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
eq_dep p x q y -> existT P p x = existT P q y.
Proof.
destruct 1; reflexivity.
Qed.
(** Exported hints *)
Hint Resolve eq_dep_intro: core.
Hint Immediate eq_dep_sym: core.
(************************************************************************)
(** * Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K *)
Section Equivalences.
Variable U:Type.
(** Invariance by Substitution of Reflexive Equality Proofs *)
Definition Eq_rect_eq :=
forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
(** Injectivity of Dependent Equality *)
Definition Eq_dep_eq :=
forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
(** Uniqueness of Identity Proofs (UIP) *)
Definition UIP_ :=
forall (x y:U) (p1 p2:x = y), p1 = p2.
(** Uniqueness of Reflexive Identity Proofs *)
Definition UIP_refl_ :=
forall (x:U) (p:x = x), p = refl_equal x.
(** Streicher's axiom K *)
Definition Streicher_K_ :=
forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
Lemma eq_rect_eq__eq_dep1_eq :
Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
Proof.
intro eq_rect_eq.
simple destruct 1; intro.
rewrite <- eq_rect_eq; auto.
Qed.
Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
Proof.
intros eq_rect_eq; red; intros.
apply (eq_rect_eq__eq_dep1_eq eq_rect_eq); apply eq_dep_dep1; trivial.
Qed.
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
Proof.
intro eq_dep_eq; red.
intros; apply eq_dep_eq with (P := fun y => x = y).
elim p2 using eq_indd.
elim p1 using eq_indd.
apply eq_dep_intro.
Qed.
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
Proof.
intro UIP; red; intros; apply UIP.
Qed.
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
Proof.
intro UIP_refl; red; intros; rewrite UIP_refl; assumption.
Qed.
(** We finally recover from K the Invariance by Substitution of
Reflexive Equality Proofs *)
Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
Proof.
intro Streicher_K; red; intros.
apply Streicher_K with (p := h).
reflexivity.
Qed.
(** Remark: It is reasonable to think that [eq_rect_eq] is strictly
stronger than [eq_rec_eq] (which is [eq_rect_eq] restricted on [Set]):
[Definition Eq_rec_eq :=
forall (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h.]
Typically, [eq_rect_eq] allows to prove UIP and Streicher's K what
does not seem possible with [eq_rec_eq]. In particular, the proof of [UIP]
requires to use [eq_rect_eq] on [fun y -> x=y] which is in [Type] but not
in [Set].
*)
End Equivalences.
Section Corollaries.
Variable U:Type.
(** UIP implies the injectivity of equality on dependent pairs in Type *)
Definition Inj_dep_pair :=
forall (P:U -> Type) (p:U) (x y:P p), existT P p x = existT P p y -> x = y.
Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
apply eq_sigT_eq_dep.
assumption.
Qed.
End Corollaries.
Notation Inj_dep_pairS := Inj_dep_pair.
Notation Inj_dep_pairT := Inj_dep_pair.
Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2.
(************************************************************************)
(** * Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)
Module Type EqdepElimination.
Axiom eq_rect_eq :
forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p),
x = eq_rect p Q x p h.
End EqdepElimination.
Module EqdepTheory (M:EqdepElimination).
Section Axioms.
Variable U:Type.
(** Invariance by Substitution of Reflexive Equality Proofs *)
Lemma eq_rect_eq :
forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Proof M.eq_rect_eq U.
Lemma eq_rec_eq :
forall (p:U) (Q:U -> Set) (x:Q p) (h:p = p), x = eq_rec p Q x p h.
Proof (fun p Q => M.eq_rect_eq U p Q).
(** Injectivity of Dependent Equality *)
Lemma eq_dep_eq : forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
Proof (eq_rect_eq__eq_dep_eq U eq_rect_eq).
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
Lemma UIP : forall (x y:U) (p1 p2:x = y), p1 = p2.
Proof (eq_dep_eq__UIP U eq_dep_eq).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma Streicher_K :
forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).
End Axioms.
(** UIP implies the injectivity of equality on dependent pairs in Type *)
Lemma inj_pair2 :
forall (U:Type) (P:U -> Type) (p:U) (x y:P p),
existT P p x = existT P p y -> x = y.
Proof (fun U => eq_dep_eq__inj_pair2 U (eq_dep_eq U)).
Notation inj_pairT2 := inj_pair2.
End EqdepTheory.
Implicit Arguments eq_dep [].
Implicit Arguments eq_dep1 [].
|