summaryrefslogtreecommitdiff
path: root/theories/Logic/Classical_Pred_Set.v
blob: c8f87fe88931c1a9011d2100baa2c0397be809a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Classical_Pred_Set.v,v 1.6.2.1 2004/07/16 19:31:06 herbelin Exp $ i*)

(** Classical Predicate Logic on Set*)

Require Import Classical_Prop.

Section Generic.
Variable U : Set.

(** de Morgan laws for quantifiers *)

Lemma not_all_ex_not :
 forall P:U -> Prop, ~ (forall n:U, P n) ->  exists n : U, ~ P n.
Proof.
unfold not in |- *; intros P notall.
apply NNPP; unfold not in |- *.
intro abs.
cut (forall n:U, P n); auto.
intro n; apply NNPP.
unfold not in |- *; intros.
apply abs; exists n; trivial.
Qed.

Lemma not_all_not_ex :
 forall P:U -> Prop, ~ (forall n:U, ~ P n) ->  exists n : U, P n.
Proof.
intros P H.
elim (not_all_ex_not (fun n:U => ~ P n) H); intros n Pn; exists n.
apply NNPP; trivial.
Qed.

Lemma not_ex_all_not :
 forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof.
unfold not in |- *; intros P notex n abs.
apply notex.
exists n; trivial.
Qed. 

Lemma not_ex_not_all :
 forall P:U -> Prop, ~ (exists n : U, ~ P n) -> forall n:U, P n.
Proof.
intros P H n.
apply NNPP.
red in |- *; intro K; apply H; exists n; trivial.
Qed.

Lemma ex_not_not_all :
 forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof.
unfold not in |- *; intros P exnot allP.
elim exnot; auto.
Qed.

Lemma all_not_not_ex :
 forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof.
unfold not in |- *; intros P allnot exP; elim exP; intros n p.
apply allnot with n; auto.
Qed.

End Generic.