summaryrefslogtreecommitdiff
path: root/theories/Logic/Classical_Pred_Set.v
blob: cda9d22c6c7655d798d07d0a1aed74bc11cc5524 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* File created for Coq V5.10.14b, Oct 1995, by duplication of
   Classical_Pred_Type.v *)

(** This file is obsolete, use Classical_Pred_Type.v via Classical.v
instead *)

(** Classical Predicate Logic on Set*)

Require Import Classical_Pred_Type.

Section Generic.
Variable U : Set.

(** de Morgan laws for quantifiers *)

Lemma not_all_ex_not :
 forall P:U -> Prop, ~ (forall n:U, P n) ->  exists n : U, ~ P n.
Proof (Classical_Pred_Type.not_all_ex_not U).

Lemma not_all_not_ex :
 forall P:U -> Prop, ~ (forall n:U, ~ P n) ->  exists n : U, P n.
Proof (Classical_Pred_Type.not_all_not_ex U).

Lemma not_ex_all_not :
 forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof (Classical_Pred_Type.not_ex_all_not U).

Lemma not_ex_not_all :
 forall P:U -> Prop, ~ (exists n : U, ~ P n) -> forall n:U, P n.
Proof (Classical_Pred_Type.not_ex_not_all U).

Lemma ex_not_not_all :
 forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof (Classical_Pred_Type.ex_not_not_all U).

Lemma all_not_not_ex :
 forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof (Classical_Pred_Type.all_not_not_ex U).

End Generic.