1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* File created for Coq V5.10.14b, Oct 1995, by duplication of
Classical_Pred_Type.v *)
(** This file is obsolete, use Classical_Pred_Type.v via Classical.v
instead *)
(** Classical Predicate Logic on Set*)
Require Import Classical_Pred_Type.
Section Generic.
Variable U : Set.
(** de Morgan laws for quantifiers *)
Lemma not_all_ex_not :
forall P:U -> Prop, ~ (forall n:U, P n) -> exists n : U, ~ P n.
Proof (Classical_Pred_Type.not_all_ex_not U).
Lemma not_all_not_ex :
forall P:U -> Prop, ~ (forall n:U, ~ P n) -> exists n : U, P n.
Proof (Classical_Pred_Type.not_all_not_ex U).
Lemma not_ex_all_not :
forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof (Classical_Pred_Type.not_ex_all_not U).
Lemma not_ex_not_all :
forall P:U -> Prop, ~ (exists n : U, ~ P n) -> forall n:U, P n.
Proof (Classical_Pred_Type.not_ex_not_all U).
Lemma ex_not_not_all :
forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof (Classical_Pred_Type.ex_not_not_all U).
Lemma all_not_not_ex :
forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof (Classical_Pred_Type.all_not_not_ex U).
End Generic.
|