1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: ClassicalFacts.v 11238 2008-07-19 09:34:03Z herbelin $ i*)
(** Some facts and definitions about classical logic
Table of contents:
1. Propositional degeneracy = excluded-middle + propositional extensionality
2. Classical logic and proof-irrelevance
2.1. CC |- prop. ext. + A inhabited -> (A = A->A) -> A has fixpoint
2.2. CC |- prop. ext. + dep elim on bool -> proof-irrelevance
2.3. CIC |- prop. ext. -> proof-irrelevance
2.4. CC |- excluded-middle + dep elim on bool -> proof-irrelevance
2.5. CIC |- excluded-middle -> proof-irrelevance
3. Weak classical axioms
3.1. Weak excluded middle
3.2. Gödel-Dummett axiom and right distributivity of implication over
disjunction
3 3. Independence of general premises and drinker's paradox
*)
(************************************************************************)
(** * Prop degeneracy = excluded-middle + prop extensionality *)
(**
i.e. [(forall A, A=True \/ A=False)
<->
(forall A, A\/~A) /\ (forall A B, (A<->B) -> A=B)]
*)
(** [prop_degeneracy] (also referred to as propositional completeness)
asserts (up to consistency) that there are only two distinct formulas *)
Definition prop_degeneracy := forall A:Prop, A = True \/ A = False.
(** [prop_extensionality] asserts that equivalent formulas are equal *)
Definition prop_extensionality := forall A B:Prop, (A <-> B) -> A = B.
(** [excluded_middle] asserts that we can reason by case on the truth
or falsity of any formula *)
Definition excluded_middle := forall A:Prop, A \/ ~ A.
(** We show [prop_degeneracy <-> (prop_extensionality /\ excluded_middle)] *)
Lemma prop_degen_ext : prop_degeneracy -> prop_extensionality.
Proof.
intros H A B [Hab Hba].
destruct (H A); destruct (H B).
rewrite H1; exact H0.
absurd B.
rewrite H1; exact (fun H => H).
apply Hab; rewrite H0; exact I.
absurd A.
rewrite H0; exact (fun H => H).
apply Hba; rewrite H1; exact I.
rewrite H1; exact H0.
Qed.
Lemma prop_degen_em : prop_degeneracy -> excluded_middle.
Proof.
intros H A.
destruct (H A).
left; rewrite H0; exact I.
right; rewrite H0; exact (fun x => x).
Qed.
Lemma prop_ext_em_degen :
prop_extensionality -> excluded_middle -> prop_degeneracy.
Proof.
intros Ext EM A.
destruct (EM A).
left; apply (Ext A True); split;
[ exact (fun _ => I) | exact (fun _ => H) ].
right; apply (Ext A False); split; [ exact H | apply False_ind ].
Qed.
(** A weakest form of propositional extensionality: extensionality for
provable propositions only *)
Definition provable_prop_extensionality := forall A:Prop, A -> A = True.
Lemma provable_prop_ext :
prop_extensionality -> provable_prop_extensionality.
Proof.
intros Ext A Ha; apply Ext; split; trivial.
Qed.
(************************************************************************)
(** * Classical logic and proof-irrelevance *)
(************************************************************************)
(** ** CC |- prop ext + A inhabited -> (A = A->A) -> A has fixpoint *)
(** We successively show that:
[prop_extensionality]
implies equality of [A] and [A->A] for inhabited [A], which
implies the existence of a (trivial) retract from [A->A] to [A]
(just take the identity), which
implies the existence of a fixpoint operator in [A]
(e.g. take the Y combinator of lambda-calculus)
*)
Notation Local inhabited A := A.
Lemma prop_ext_A_eq_A_imp_A :
prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
Proof.
intros Ext A a.
apply (Ext (A -> A) A); split; [ exact (fun _ => a) | exact (fun _ _ => a) ].
Qed.
Record retract (A B:Prop) : Prop :=
{f1 : A -> B; f2 : B -> A; f1_o_f2 : forall x:B, f1 (f2 x) = x}.
Lemma prop_ext_retract_A_A_imp_A :
prop_extensionality -> forall A:Prop, inhabited A -> retract A (A -> A).
Proof.
intros Ext A a.
rewrite (prop_ext_A_eq_A_imp_A Ext A a).
exists (fun x:A => x) (fun x:A => x).
reflexivity.
Qed.
Record has_fixpoint (A:Prop) : Prop :=
{F : (A -> A) -> A; Fix : forall f:A -> A, F f = f (F f)}.
Lemma ext_prop_fixpoint :
prop_extensionality -> forall A:Prop, inhabited A -> has_fixpoint A.
Proof.
intros Ext A a.
case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
intro f.
pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
reflexivity.
Qed.
(** Remark: [prop_extensionality] can be replaced in lemma [ext_prop_fixpoint]
by the weakest property [provable_prop_extensionality].
*)
(************************************************************************)
(** ** CC |- prop_ext /\ dep elim on bool -> proof-irrelevance *)
(** [proof_irrelevance] asserts equality of all proofs of a given formula *)
Definition proof_irrelevance := forall (A:Prop) (a1 a2:A), a1 = a2.
(** Assume that we have booleans with the property that there is at most 2
booleans (which is equivalent to dependent case analysis). Consider
the fixpoint of the negation function: it is either true or false by
dependent case analysis, but also the opposite by fixpoint. Hence
proof-irrelevance.
We then map equality of boolean proofs to proof irrelevance in all
propositions.
*)
Section Proof_irrelevance_gen.
Variable bool : Prop.
Variable true : bool.
Variable false : bool.
Hypothesis bool_elim : forall C:Prop, C -> C -> bool -> C.
Hypothesis
bool_elim_redl : forall (C:Prop) (c1 c2:C), c1 = bool_elim C c1 c2 true.
Hypothesis
bool_elim_redr : forall (C:Prop) (c1 c2:C), c2 = bool_elim C c1 c2 false.
Let bool_dep_induction :=
forall P:bool -> Prop, P true -> P false -> forall b:bool, P b.
Lemma aux : prop_extensionality -> bool_dep_induction -> true = false.
Proof.
intros Ext Ind.
case (ext_prop_fixpoint Ext bool true); intros G Gfix.
set (neg := fun b:bool => bool_elim bool false true b).
generalize (refl_equal (G neg)).
pattern (G neg) at 1 in |- *.
apply Ind with (b := G neg); intro Heq.
rewrite (bool_elim_redl bool false true).
change (true = neg true) in |- *; rewrite Heq; apply Gfix.
rewrite (bool_elim_redr bool false true).
change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
apply Gfix.
Qed.
Lemma ext_prop_dep_proof_irrel_gen :
prop_extensionality -> bool_dep_induction -> proof_irrelevance.
Proof.
intros Ext Ind A a1 a2.
set (f := fun b:bool => bool_elim A a1 a2 b).
rewrite (bool_elim_redl A a1 a2).
change (f true = a2) in |- *.
rewrite (bool_elim_redr A a1 a2).
change (f true = f false) in |- *.
rewrite (aux Ext Ind).
reflexivity.
Qed.
End Proof_irrelevance_gen.
(** In the pure Calculus of Constructions, we can define the boolean
proposition bool = (C:Prop)C->C->C but we cannot prove that it has at
most 2 elements.
*)
Section Proof_irrelevance_Prop_Ext_CC.
Definition BoolP := forall C:Prop, C -> C -> C.
Definition TrueP : BoolP := fun C c1 c2 => c1.
Definition FalseP : BoolP := fun C c1 c2 => c2.
Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2.
Definition BoolP_elim_redl (C:Prop) (c1 c2:C) :
c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1.
Definition BoolP_elim_redr (C:Prop) (c1 c2:C) :
c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2.
Definition BoolP_dep_induction :=
forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b.
Lemma ext_prop_dep_proof_irrel_cc :
prop_extensionality -> BoolP_dep_induction -> proof_irrelevance.
Proof.
exact (ext_prop_dep_proof_irrel_gen BoolP TrueP FalseP BoolP_elim BoolP_elim_redl
BoolP_elim_redr).
Qed.
End Proof_irrelevance_Prop_Ext_CC.
(** Remark: [prop_extensionality] can be replaced in lemma
[ext_prop_dep_proof_irrel_gen] by the weakest property
[provable_prop_extensionality].
*)
(************************************************************************)
(** ** CIC |- prop. ext. -> proof-irrelevance *)
(** In the Calculus of Inductive Constructions, inductively defined booleans
enjoy dependent case analysis, hence directly proof-irrelevance from
propositional extensionality.
*)
Section Proof_irrelevance_CIC.
Inductive boolP : Prop :=
| trueP : boolP
| falseP : boolP.
Definition boolP_elim_redl (C:Prop) (c1 c2:C) :
c1 = boolP_ind C c1 c2 trueP := refl_equal c1.
Definition boolP_elim_redr (C:Prop) (c1 c2:C) :
c2 = boolP_ind C c1 c2 falseP := refl_equal c2.
Scheme boolP_indd := Induction for boolP Sort Prop.
Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance.
Proof.
exact (fun pe =>
ext_prop_dep_proof_irrel_gen boolP trueP falseP boolP_ind boolP_elim_redl
boolP_elim_redr pe boolP_indd).
Qed.
End Proof_irrelevance_CIC.
(** Can we state proof irrelevance from propositional degeneracy
(i.e. propositional extensionality + excluded middle) without
dependent case analysis ?
Berardi [[Berardi90]] built a model of CC interpreting inhabited
types by the set of all untyped lambda-terms. This model satisfies
propositional degeneracy without satisfying proof-irrelevance (nor
dependent case analysis). This implies that the previous results
cannot be refined.
[[Berardi90]] Stefano Berardi, "Type dependence and constructive
mathematics", Ph. D. thesis, Dipartimento Matematica, Università di
Torino, 1990.
*)
(************************************************************************)
(** ** CC |- excluded-middle + dep elim on bool -> proof-irrelevance *)
(** This is a proof in the pure Calculus of Construction that
classical logic in [Prop] + dependent elimination of disjunction entails
proof-irrelevance.
Reference:
[[Coquand90]] T. Coquand, "Metamathematical Investigations of a
Calculus of Constructions", Proceedings of Logic in Computer Science
(LICS'90), 1990.
Proof skeleton: classical logic + dependent elimination of
disjunction + discrimination of proofs implies the existence of a
retract from [Prop] into [bool], hence inconsistency by encoding any
paradox of system U- (e.g. Hurkens' paradox).
*)
Require Import Hurkens.
Section Proof_irrelevance_EM_CC.
Variable or : Prop -> Prop -> Prop.
Variable or_introl : forall A B:Prop, A -> or A B.
Variable or_intror : forall A B:Prop, B -> or A B.
Hypothesis or_elim : forall A B C:Prop, (A -> C) -> (B -> C) -> or A B -> C.
Hypothesis
or_elim_redl :
forall (A B C:Prop) (f:A -> C) (g:B -> C) (a:A),
f a = or_elim A B C f g (or_introl A B a).
Hypothesis
or_elim_redr :
forall (A B C:Prop) (f:A -> C) (g:B -> C) (b:B),
g b = or_elim A B C f g (or_intror A B b).
Hypothesis
or_dep_elim :
forall (A B:Prop) (P:or A B -> Prop),
(forall a:A, P (or_introl A B a)) ->
(forall b:B, P (or_intror A B b)) -> forall b:or A B, P b.
Hypothesis em : forall A:Prop, or A (~ A).
Variable B : Prop.
Variables b1 b2 : B.
(** [p2b] and [b2p] form a retract if [~b1=b2] *)
Definition p2b A := or_elim A (~ A) B (fun _ => b1) (fun _ => b2) (em A).
Definition b2p b := b1 = b.
Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
Proof.
unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
unfold b2p in |- *; intros.
apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
destruct (b H).
Qed.
Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
Proof.
intro not_eq_b1_b2.
unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
unfold b2p in |- *; intros.
assumption.
destruct not_eq_b1_b2.
rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
assumption.
Qed.
(** Using excluded-middle a second time, we get proof-irrelevance *)
Theorem proof_irrelevance_cc : b1 = b2.
Proof.
refine (or_elim _ _ _ _ _ (em (b1 = b2))); intro H.
trivial.
apply (paradox B p2b b2p (p2p2 H) p2p1).
Qed.
End Proof_irrelevance_EM_CC.
(** Remark: Hurkens' paradox still holds with a retract from the
_negative_ fragment of [Prop] into [bool], hence weak classical
logic, i.e. [forall A, ~A\/~~A], is enough for deriving
proof-irrelevance.
*)
(************************************************************************)
(** ** CIC |- excluded-middle -> proof-irrelevance *)
(**
Since, dependent elimination is derivable in the Calculus of
Inductive Constructions (CCI), we get proof-irrelevance from classical
logic in the CCI.
*)
Section Proof_irrelevance_CCI.
Hypothesis em : forall A:Prop, A \/ ~ A.
Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C)
(a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a).
Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C)
(b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b).
Scheme or_indd := Induction for or Sort Prop.
Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2.
Proof.
exact (proof_irrelevance_cc or or_introl or_intror or_ind or_elim_redl
or_elim_redr or_indd em).
Qed.
End Proof_irrelevance_CCI.
(** Remark: in the Set-impredicative CCI, Hurkens' paradox still holds with
[bool] in [Set] and since [~true=false] for [true] and [false]
in [bool] from [Set], we get the inconsistency of
[em : forall A:Prop, {A}+{~A}] in the Set-impredicative CCI.
*)
(** * Weak classical axioms *)
(** We show the following increasing in the strength of axioms:
- weak excluded-middle
- right distributivity of implication over disjunction and Gödel-Dummett axiom
- independence of general premises and drinker's paradox
- excluded-middle
*)
(** ** Weak excluded-middle *)
(** The weak classical logic based on [~~A \/ ~A] is referred to with
name KC in {[ChagrovZakharyaschev97]]
[[ChagrovZakharyaschev97]] Alexander Chagrov and Michael
Zakharyaschev, "Modal Logic", Clarendon Press, 1997.
*)
Definition weak_excluded_middle :=
forall A:Prop, ~~A \/ ~A.
(** The interest in the equivalent variant
[weak_generalized_excluded_middle] is that it holds even in logic
without a primitive [False] connective (like Gödel-Dummett axiom) *)
Definition weak_generalized_excluded_middle :=
forall A B:Prop, ((A -> B) -> B) \/ (A -> B).
(** ** Gödel-Dummett axiom *)
(** [(A->B) \/ (B->A)] is studied in [[Dummett59]] and is based on [[Gödel33]].
[[Dummett59]] Michael A. E. Dummett. "A Propositional Calculus
with a Denumerable Matrix", In the Journal of Symbolic Logic, Vol
24 No. 2(1959), pp 97-103.
[[Gödel33]] Kurt Gödel. "Zum intuitionistischen Aussagenkalkül",
Ergeb. Math. Koll. 4 (1933), pp. 34-38.
*)
Definition GodelDummett := forall A B:Prop, (A -> B) \/ (B -> A).
Lemma excluded_middle_Godel_Dummett : excluded_middle -> GodelDummett.
Proof.
intros EM A B. destruct (EM B) as [HB|HnotB].
left; intros _; exact HB.
right; intros HB; destruct (HnotB HB).
Qed.
(** [(A->B) \/ (B->A)] is equivalent to [(C -> A\/B) -> (C->A) \/ (C->B)]
(proof from [[Dummett59]]) *)
Definition RightDistributivityImplicationOverDisjunction :=
forall A B C:Prop, (C -> A\/B) -> (C->A) \/ (C->B).
Lemma Godel_Dummett_iff_right_distr_implication_over_disjunction :
GodelDummett <-> RightDistributivityImplicationOverDisjunction.
Proof.
split.
intros GD A B C HCAB.
destruct (GD B A) as [HBA|HAB]; [left|right]; intro HC;
destruct (HCAB HC) as [HA|HB]; [ | apply HBA | apply HAB | ]; assumption.
intros Distr A B.
destruct (Distr A B (A\/B)) as [HABA|HABB].
intro HAB; exact HAB.
right; intro HB; apply HABA; right; assumption.
left; intro HA; apply HABB; left; assumption.
Qed.
(** [(A->B) \/ (B->A)] is stronger than the weak excluded middle *)
Lemma Godel_Dummett_weak_excluded_middle :
GodelDummett -> weak_excluded_middle.
Proof.
intros GD A. destruct (GD (~A) A) as [HnotAA|HAnotA].
left; intro HnotA; apply (HnotA (HnotAA HnotA)).
right; intro HA; apply (HAnotA HA HA).
Qed.
(** ** Independence of general premises and drinker's paradox *)
(** Independence of general premises is the unconstrained, non
constructive, version of the Independence of Premises as
considered in [[Troelstra73]].
It is a generalization to predicate logic of the right
distributivity of implication over disjunction (hence of
Gödel-Dummett axiom) whose own constructive form (obtained by a
restricting the third formula to be negative) is called
Kreisel-Putnam principle [[KreiselPutnam57]].
[[KreiselPutnam57]], Georg Kreisel and Hilary Putnam. "Eine
Unableitsbarkeitsbeweismethode für den intuitionistischen
Aussagenkalkül". Archiv für Mathematische Logik und
Graundlagenforschung, 3:74- 78, 1957.
[[Troelstra73]], Anne Troelstra, editor. Metamathematical
Investigation of Intuitionistic Arithmetic and Analysis, volume
344 of Lecture Notes in Mathematics, Springer-Verlag, 1973.
*)
Definition IndependenceOfGeneralPremises :=
forall (A:Type) (P:A -> Prop) (Q:Prop),
inhabited A -> (Q -> exists x, P x) -> exists x, Q -> P x.
Lemma
independence_general_premises_right_distr_implication_over_disjunction :
IndependenceOfGeneralPremises -> RightDistributivityImplicationOverDisjunction.
Proof.
intros IP A B C HCAB.
destruct (IP bool (fun b => if b then A else B) C true) as ([|],H).
intro HC; destruct (HCAB HC); [exists true|exists false]; assumption.
left; assumption.
right; assumption.
Qed.
Lemma independence_general_premises_Godel_Dummett :
IndependenceOfGeneralPremises -> GodelDummett.
Proof.
destruct Godel_Dummett_iff_right_distr_implication_over_disjunction.
auto using independence_general_premises_right_distr_implication_over_disjunction.
Qed.
(** Independence of general premises is equivalent to the drinker's paradox *)
Definition DrinkerParadox :=
forall (A:Type) (P:A -> Prop),
inhabited A -> exists x, (exists x, P x) -> P x.
Lemma independence_general_premises_drinker :
IndependenceOfGeneralPremises <-> DrinkerParadox.
Proof.
split.
intros IP A P InhA; apply (IP A P (exists x, P x) InhA); intro Hx; exact Hx.
intros Drinker A P Q InhA H; destruct (Drinker A P InhA) as (x,Hx).
exists x; intro HQ; apply (Hx (H HQ)).
Qed.
(** Independence of general premises is weaker than (generalized)
excluded middle
Remark: generalized excluded middle is preferred here to avoid relying on
the "ex falso quodlibet" property (i.e. [False -> forall A, A])
*)
Definition generalized_excluded_middle :=
forall A B:Prop, A \/ (A -> B).
Lemma excluded_middle_independence_general_premises :
generalized_excluded_middle -> DrinkerParadox.
Proof.
intros GEM A P x0.
destruct (GEM (exists x, P x) (P x0)) as [(x,Hx)|Hnot].
exists x; intro; exact Hx.
exists x0; exact Hnot.
Qed.
|