1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: ClassicalDescription.v 8892 2006-06-04 17:59:53Z herbelin $ i*)
(** This file provides classical logic and definite description *)
(** Classical definite description operator (i.e. iota) implies
excluded-middle in [Set] and leads to a classical world populated
with non computable functions. It conflicts with the
impredicativity of [Set] *)
Set Implicit Arguments.
Require Export Classical.
Require Import ChoiceFacts.
Notation Local "'inhabited' A" := A (at level 200, only parsing).
Axiom constructive_definite_description :
forall (A : Type) (P : A->Prop), (exists! x : A, P x) -> { x : A | P x }.
(** The idea for the following proof comes from [ChicliPottierSimpson02] *)
Theorem excluded_middle_informative : forall P:Prop, {P} + {~ P}.
Proof.
apply
(constructive_definite_descr_excluded_middle
constructive_definite_description classic).
Qed.
Theorem classical_definite_description :
forall (A : Type) (P : A->Prop), inhabited A ->
{ x : A | (exists! x : A, P x) -> P x }.
Proof.
intros A P i.
destruct (excluded_middle_informative (exists! x, P x)) as [Hex|HnonP].
apply constructive_definite_description with (P:= fun x => (exists! x : A, P x) -> P x).
destruct Hex as (x,(Hx,Huni)).
exists x; split.
intros _; exact Hx.
firstorder.
exists i; tauto.
Qed.
(** Church's iota operator *)
Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (classical_definite_description P i).
Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
(exists! x:A, P x) -> P (iota i P)
:= proj2_sig (classical_definite_description P i).
(** Weaker lemmas (compatibility lemmas) *)
Unset Implicit Arguments.
Lemma dependent_description :
forall (A:Type) (B:A -> Type) (R:forall x:A, B x -> Prop),
(forall x:A, exists! y : B x, R x y) ->
(exists f : (forall x:A, B x), forall x:A, R x (f x)).
Proof.
intros A B R H.
assert (Hexuni:forall x, exists! y, R x y).
intro x. apply H.
exists (fun x => proj1_sig (constructive_definite_description (R x) (Hexuni x))).
intro x.
apply (proj2_sig (constructive_definite_description (R x) (Hexuni x))).
Qed.
Theorem description :
forall (A B:Type) (R:A -> B -> Prop),
(forall x : A, exists! y : B, R x y) ->
(exists f : A->B, forall x:A, R x (f x)).
Proof.
intros A B.
apply (dependent_description A (fun _ => B)).
Qed.
(** Axiom of unique "choice" (functional reification of functional relations) *)
Set Implicit Arguments.
Require Import Setoid.
Theorem unique_choice :
forall (A B:Type) (R:A -> B -> Prop),
(forall x:A, exists! y : B, R x y) ->
(exists f : A -> B, forall x:A, R x (f x)).
Proof.
intros A B R H.
apply (description A B).
intro x. apply H.
Qed.
|