summaryrefslogtreecommitdiff
path: root/theories/Logic/ClassicalChoice.v
blob: 5a633f84273ff58008f49d44e4869c2c93b48de3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: ClassicalChoice.v 6401 2004-12-05 16:44:57Z herbelin $ i*)

(** This file provides classical logic and functional choice *)

(** This file extends ClassicalDescription.v with the axiom of choice.
    As ClassicalDescription.v, it implies the double-negation of
    excluded-middle in Set and implies a strongly classical
    world. Especially it conflicts with impredicativity of Set, knowing
    that true<>false in Set.
*)

Require Export ClassicalDescription.
Require Export RelationalChoice.
Require Import ChoiceFacts.

Theorem choice :
 forall (A B:Type) (R:A -> B -> Prop),
   (forall x:A, exists y : B, R x y) ->
    exists f : A -> B, (forall x:A, R x (f x)).
Proof.
intros A B.
apply description_rel_choice_imp_funct_choice.
exact (description A B).
exact (relational_choice A B).
Qed.