summaryrefslogtreecommitdiff
path: root/theories/Logic/ChoiceFacts.v
blob: bc892ca9f6a66ce1aa771c0eb7d2a22be05e2764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: ChoiceFacts.v 8132 2006-03-05 10:59:47Z herbelin $ i*)

(** We show that the functional formulation of the axiom of Choice
   (usual formulation in type theory) is equivalent to its relational
   formulation (only formulation of set theory) + the axiom of
   (parametric) definite description (aka axiom of unique choice) *)

(** This shows that the axiom of choice can be assumed (under its
   relational formulation) without known inconsistency with classical logic,
   though definite description conflicts with classical logic *)

Section ChoiceEquivalences.

Variables A B :Type.

Definition RelationalChoice :=
  forall (R:A -> B -> Prop),
    (forall x:A, exists y : B, R x y) ->
     exists R' : A -> B -> Prop,
      (forall x:A,
         exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')).

Definition FunctionalChoice :=
  forall (R:A -> B -> Prop),
    (forall x:A, exists y : B, R x y) ->
     exists f : A -> B, (forall x:A, R x (f x)).

Definition ParamDefiniteDescription :=
  forall (R:A -> B -> Prop),
    (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) ->
     exists f : A -> B, (forall x:A, R x (f x)).

Lemma description_rel_choice_imp_funct_choice :
 ParamDefiniteDescription -> RelationalChoice -> FunctionalChoice.
intros Descr RelCh.
red in |- *; intros R H.
destruct (RelCh R H) as [R' H0].
destruct (Descr R') as [f H1].
intro x.
elim (H0 x); intros y [H2 [H3 H4]]; exists y; split; [ exact H3 | exact H4 ].
exists f; intro x.
elim (H0 x); intros y [H2 [H3 H4]].
rewrite <- (H4 (f x) (H1 x)).
exact H2.
Qed.

Lemma funct_choice_imp_rel_choice : FunctionalChoice -> RelationalChoice.
intros FunCh.
red in |- *; intros R H.
destruct (FunCh R H) as [f H0].
exists (fun x y => y = f x).
intro x; exists (f x); split;
 [ apply H0
 | split; [ reflexivity | intros y H1; symmetry  in |- *; exact H1 ] ].
Qed.

Lemma funct_choice_imp_description :
 FunctionalChoice -> ParamDefiniteDescription.
intros FunCh.
red in |- *; intros R H.
destruct (FunCh R) as [f H0].
(* 1 *)
intro x.
elim (H x); intros y [H0 H1].
exists y; exact H0.
(* 2 *)
exists f; exact H0.
Qed.

Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
 FunctionalChoice <-> RelationalChoice /\ ParamDefiniteDescription.
split.
intro H; split;
 [ exact (funct_choice_imp_rel_choice H)
 | exact (funct_choice_imp_description H) ].
intros [H H0]; exact (description_rel_choice_imp_funct_choice H0 H).
Qed.

End ChoiceEquivalences.

(** We show that the guarded relational formulation of the axiom of Choice
   comes from the non guarded formulation in presence either of the
   independance of premises or proof-irrelevance *)

Definition GuardedRelationalChoice (A B:Type) :=
  forall (P:A -> Prop) (R:A -> B -> Prop),
    (forall x:A, P x -> exists y : B, R x y) ->
     exists R' : A -> B -> Prop,
      (forall x:A,
         P x ->
         exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')).

Definition ProofIrrelevance := forall (A:Prop) (a1 a2:A), a1 = a2.

Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
  (forall A B, RelationalChoice A B)
    -> ProofIrrelevance -> (forall A B, GuardedRelationalChoice A B).
Proof.
intros rel_choice proof_irrel.
red in |- *; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as [R' H0].
intros [x HPx].
destruct (H x HPx) as [y HRxy].
exists y; exact HRxy.
set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y).
exists R''; intros x HPx.
destruct (H0 (existT P x HPx)) as [y [HRxy [HR'xy Huniq]]].
exists y. split.
  exact HRxy.
  split.
    red in |- *; exists HPx; exact HR'xy.
    intros y' HR''xy'.
      apply Huniq.
      unfold R'' in HR''xy'.
      destruct HR''xy' as [H'Px HR'xy'].
      rewrite proof_irrel with (a1 := HPx) (a2 := H'Px).
      exact HR'xy'.
Qed.

Definition IndependenceOfGeneralPremises :=
  forall (A:Type) (P:A -> Prop) (Q:Prop),
    (Q -> exists x, P x) -> exists x, Q -> P x.

Lemma rel_choice_indep_of_general_premises_imp_guarded_rel_choice :
 forall A B, RelationalChoice A B -> 
   IndependenceOfGeneralPremises -> GuardedRelationalChoice A B.
Proof.
intros A B RelCh IndPrem.
red in |- *; intros P R H.
destruct (RelCh (fun x y => P x -> R x y)) as [R' H0].
  intro x. apply IndPrem.
    apply H.
  exists R'.
  intros x HPx.
    destruct (H0 x) as [y [H1 H2]].
    exists y. split. 
      apply (H1 HPx).
      exact H2.
Qed.


(** Countable codomains, such as [nat], can be equipped with a
    well-order, which implies the existence of a least element on
    inhabited decidable subsets. As a consequence, the relational form of
    the axiom of choice is derivable on [nat] for decidable relations.

    We show instead that definite description and the functional form
    of the axiom of choice are equivalent on decidable relation with [nat]
    as codomain 
*)

Require Import Wf_nat.
Require Import Compare_dec.
Require Import Decidable.
Require Import Arith.

Definition has_unique_least_element (A:Type) (R:A->A->Prop) (P:A->Prop) :=
  (exists x, (P x /\ forall x', P x' -> R x x')
      /\ forall x', P x' /\ (forall x'', P x'' -> R x' x'') -> x=x').

Lemma dec_inh_nat_subset_has_unique_least_element :
  forall P:nat->Prop, (forall n, P n \/ ~ P n) ->
    (exists n, P n) -> has_unique_least_element nat le P.
Proof.
intros P Pdec (n0,HPn0).
assert
   (forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'')
              \/(forall n', P n' -> n<=n')).
  induction n.
  right.
  intros n' Hn'.
  apply le_O_n.
  destruct IHn.
  left; destruct H as (n', (Hlt', HPn')).
  exists n'; split.
  apply lt_S; assumption.
  assumption.
  destruct (Pdec n).
  left; exists n; split.
  apply lt_n_Sn.
  split; assumption.
  right.
  intros n' Hltn'.
  destruct (le_lt_eq_dec n n') as [Hltn|Heqn].
  apply H; assumption.
  assumption.
  destruct H0.
  rewrite Heqn; assumption.
destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0];
  repeat split; 
  assumption || intros n' (HPn',Hminn'); apply le_antisym; auto.
Qed.

Definition FunctionalChoice_on (A B:Type) (R:A->B->Prop) :=
    (forall x:A, exists y : B, R x y) ->
     exists f : A -> B, (forall x:A, R x (f x)).

Lemma classical_denumerable_description_imp_fun_choice : 
  forall A:Type, 
  ParamDefiniteDescription A nat -> 
  forall R, (forall x y, decidable (R x y)) -> FunctionalChoice_on A nat R.
Proof.
intros A Descr.
red in |- *; intros R Rdec H.
set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
destruct (Descr R') as [f Hf].
  intro x.
  apply (dec_inh_nat_subset_has_unique_least_element (R x)). 
    apply Rdec.
    apply (H x).
exists f.
intros x.
destruct (Hf x) as [Hfx _].
assumption.
Qed.