1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Mapcanon.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
Require Import Bool.
Require Import Sumbool.
Require Import Arith.
Require Import ZArith.
Require Import Addr.
Require Import Adist.
Require Import Addec.
Require Import Map.
Require Import Mapaxioms.
Require Import Mapiter.
Require Import Fset.
Require Import List.
Require Import Lsort.
Require Import Mapsubset.
Require Import Mapcard.
Section MapCanon.
Variable A : Set.
Inductive mapcanon : Map A -> Prop :=
| M0_canon : mapcanon (M0 A)
| M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y)
| M2_canon :
forall m1 m2:Map A,
mapcanon m1 ->
mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2).
Lemma mapcanon_M2 :
forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2).
Proof.
intros. inversion H. assumption.
Qed.
Lemma mapcanon_M2_1 :
forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1.
Proof.
intros. inversion H. assumption.
Qed.
Lemma mapcanon_M2_2 :
forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2.
Proof.
intros. inversion H. assumption.
Qed.
Lemma M2_eqmap_1 :
forall m0 m1 m2 m3:Map A,
eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2.
Proof.
unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_div_2 a).
rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m0 m1).
rewrite <- (MapGet_M2_bit_0_0 A _ (ad_double_bit_0 a) m2 m3).
exact (H (ad_double a)).
Qed.
Lemma M2_eqmap_2 :
forall m0 m1 m2 m3:Map A,
eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3.
Proof.
unfold eqmap, eqm in |- *. intros. rewrite <- (ad_double_plus_un_div_2 a).
rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m0 m1).
rewrite <- (MapGet_M2_bit_0_1 A _ (ad_double_plus_un_bit_0 a) m2 m3).
exact (H (ad_double_plus_un a)).
Qed.
Lemma mapcanon_unique :
forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'.
Proof.
simple induction m. simple induction m'. trivial.
intros a y H H0 H1. cut (NONE A = MapGet A (M1 A a y) a). simpl in |- *. rewrite (ad_eq_correct a).
intro. discriminate H2.
exact (H1 a).
intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = NONE A). simpl in |- *.
rewrite (ad_eq_correct a). intro. discriminate H2.
exact (H1 a).
intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *.
rewrite (ad_eq_correct a). intro. elim (sumbool_of_bool (ad_eq a0 a)). intro H3.
rewrite H3 in H2. inversion H2. rewrite (ad_eq_complete _ _ H3). reflexivity.
intro H3. rewrite H3 in H2. discriminate H2.
exact (H1 a).
intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)).
rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro.
elim (le_Sn_O _ (le_S_n _ _ H4)).
rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
intros. rewrite (H m2). rewrite (H0 m3). reflexivity.
exact (mapcanon_M2_2 _ _ H3).
exact (mapcanon_M2_2 _ _ H4).
exact (M2_eqmap_2 _ _ _ _ H5).
exact (mapcanon_M2_1 _ _ H3).
exact (mapcanon_M2_1 _ _ H4).
exact (M2_eqmap_1 _ _ _ _ H5).
Qed.
Lemma MapPut1_canon :
forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p).
Proof.
simple induction p. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
apply M1_canon.
apply le_n.
apply M2_canon. apply M1_canon.
apply M1_canon.
apply le_n.
simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M0_canon.
apply H.
simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
apply M2_canon. apply H.
apply M0_canon.
simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
simpl in |- *. simpl in |- *. intros. case (ad_bit_0 a). apply M2_canon. apply M1_canon.
apply M1_canon.
simpl in |- *. apply le_n.
apply M2_canon. apply M1_canon.
apply M1_canon.
simpl in |- *. apply le_n.
Qed.
Lemma MapPut_canon :
forall m:Map A,
mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y).
Proof.
simple induction m. intros. simpl in |- *. apply M1_canon.
intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
intro. apply MapPut1_canon.
intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
apply plus_le_compat. exact (MapCard_Put_lb A m0 ad_z y).
apply le_n.
intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
apply H0. exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (ad_x p0) y).
intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (ad_x p0) y).
apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
apply H0. apply (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_l. exact (MapCard_Put_lb A m1 ad_z y).
Qed.
Lemma MapPut_behind_canon :
forall m:Map A,
mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y).
Proof.
simple induction m. intros. simpl in |- *. apply M1_canon.
intros a0 y0 H a y. simpl in |- *. case (ad_xor a0 a). apply M1_canon.
intro. apply MapPut1_canon.
intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 ad_z y).
apply le_n.
intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
apply H0. exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (ad_x p0) y).
intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
exact (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (ad_x p0) y).
apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
apply H0. apply (mapcanon_M2_2 m0 m1 H1).
simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
exact (mapcanon_M2 m0 m1 H1).
apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 ad_z y).
Qed.
Lemma makeM2_canon :
forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m').
Proof.
intro. case m. intro. case m'. intros. exact M0_canon.
intros a y H H0. exact (M1_canon (ad_double_plus_un a) y).
intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0).
intros a y m'. case m'. intros. exact (M1_canon (ad_double a) y).
intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n.
intros. simpl in |- *. apply M2_canon; try assumption.
apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0).
exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
simpl in |- *. intros. apply M2_canon; try assumption.
apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H).
exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
Qed.
Fixpoint MapCanonicalize (m:Map A) : Map A :=
match m with
| M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)
| _ => m
end.
Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m).
Proof.
simple induction m. apply eqmap_refl.
intros. apply eqmap_refl.
intros. simpl in |- *. unfold eqmap, eqm in |- *. intro.
rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
rewrite <- (H (ad_div_2 a)). rewrite <- (H0 (ad_div_2 a)). reflexivity.
Qed.
Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m).
Proof.
simple induction m. apply M0_canon.
intros. simpl in |- *. apply M1_canon.
intros. simpl in |- *. apply makeM2_canon; assumption.
Qed.
Lemma mapcanon_exists :
forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}.
Proof.
intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1.
apply mapcanon_exists_2.
Qed.
Lemma MapRemove_canon :
forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a).
Proof.
simple induction m. intros. exact M0_canon.
intros a y H a0. simpl in |- *. case (ad_eq a a0). exact M0_canon.
assumption.
intros. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
apply H0. exact (mapcanon_M2_2 _ _ H1).
apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
exact (mapcanon_M2_2 _ _ H1).
Qed.
Lemma MapMerge_canon :
forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m').
Proof.
simple induction m. intros. exact H0.
simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y).
simple induction m'. intros. exact H1.
intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y).
intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
exact (mapcanon_M2_1 _ _ H4).
apply H0. exact (mapcanon_M2_2 _ _ H3).
exact (mapcanon_M2_2 _ _ H4).
change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *.
apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3).
exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
Qed.
Lemma MapDelta_canon :
forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m').
Proof.
simple induction m. intros. exact H0.
simpl in |- *. intros a y m' H H0. case (MapGet A m' a). exact (MapPut_canon m' H0 a y).
intro. exact (MapRemove_canon m' H0 a).
simple induction m'. intros. exact H1.
unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a).
exact (MapPut_canon _ H1 a y).
intro. exact (MapRemove_canon _ H1 a).
intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
exact (mapcanon_M2_1 _ _ H4).
apply H0. exact (mapcanon_M2_2 _ _ H3).
exact (mapcanon_M2_2 _ _ H4).
Qed.
Variable B : Set.
Lemma MapDomRestrTo_canon :
forall m:Map A,
mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m').
Proof.
simple induction m. intros. exact M0_canon.
simpl in |- *. intros a y H m'. case (MapGet B m' a). exact M0_canon.
intro. apply M1_canon.
simple induction m'. exact M0_canon.
unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a). exact M0_canon.
intro. apply M1_canon.
intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
apply H0. exact (mapcanon_M2_2 m0 m1 H1).
Qed.
Lemma MapDomRestrBy_canon :
forall m:Map A,
mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m').
Proof.
simple induction m. intros. exact M0_canon.
simpl in |- *. intros a y H m'. case (MapGet B m' a). assumption.
intro. exact M0_canon.
simple induction m'. exact H1.
intros a y. simpl in |- *. case (ad_bit_0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1).
apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1).
exact (mapcanon_M2_2 _ _ H1).
intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
apply H0. exact (mapcanon_M2_2 _ _ H1).
Qed.
Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l).
Proof.
simple induction l. exact M0_canon.
intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption.
Qed.
Lemma MapSubset_c_1 :
forall (m:Map A) (m':Map B),
mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption.
apply M0_canon.
exact (MapSubset_imp_2 _ _ m m' H0).
Qed.
Lemma MapSubset_c_2 :
forall (m:Map A) (m':Map B),
MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'.
Proof.
intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl.
Qed.
End MapCanon.
Section FSetCanon.
Variable A : Set.
Lemma MapDom_canon :
forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m).
Proof.
simple induction m. intro. exact (M0_canon unit).
intros a y H. exact (M1_canon unit a _).
intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1).
apply H0. exact (mapcanon_M2_2 A _ _ H1).
change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom.
exact (mapcanon_M2 A _ _ H1).
Qed.
End FSetCanon.
Section MapFoldCanon.
Variables A B : Set.
Lemma MapFold_canon_1 :
forall m0:Map B,
mapcanon B m0 ->
forall op:Map B -> Map B -> Map B,
(forall m1:Map B,
mapcanon B m1 ->
forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
forall f:ad -> A -> Map B,
(forall (a:ad) (y:A), mapcanon B (f a y)) ->
forall (m:Map A) (pf:ad -> ad),
mapcanon B (MapFold1 A (Map B) m0 op f pf m).
Proof.
simple induction m. intro. exact H.
intros a y pf. simpl in |- *. apply H1.
intros. simpl in |- *. apply H0. apply H2.
apply H3.
Qed.
Lemma MapFold_canon :
forall m0:Map B,
mapcanon B m0 ->
forall op:Map B -> Map B -> Map B,
(forall m1:Map B,
mapcanon B m1 ->
forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
forall f:ad -> A -> Map B,
(forall (a:ad) (y:A), mapcanon B (f a y)) ->
forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m).
Proof.
intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)).
Qed.
Lemma MapCollect_canon :
forall f:ad -> A -> Map B,
(forall (a:ad) (y:A), mapcanon B (f a y)) ->
forall m:Map A, mapcanon B (MapCollect A B f m).
Proof.
intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon.
intros. exact (MapMerge_canon B m1 m2 H0 H1).
assumption.
Qed.
End MapFoldCanon.
|