1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Mapc.v,v 1.4.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
Require Import Bool.
Require Import Sumbool.
Require Import Arith.
Require Import ZArith.
Require Import Addr.
Require Import Adist.
Require Import Addec.
Require Import Map.
Require Import Mapaxioms.
Require Import Fset.
Require Import Mapiter.
Require Import Mapsubset.
Require Import List.
Require Import Lsort.
Require Import Mapcard.
Require Import Mapcanon.
Section MapC.
Variables A B C : Set.
Lemma MapPut_as_Merge_c :
forall m:Map A,
mapcanon A m ->
forall (a:ad) (y:A), MapPut A m a y = MapMerge A m (M1 A a y).
Proof.
intros. apply mapcanon_unique. exact (MapPut_canon A m H a y).
apply MapMerge_canon. assumption.
apply M1_canon.
apply MapPut_as_Merge.
Qed.
Lemma MapPut_behind_as_Merge_c :
forall m:Map A,
mapcanon A m ->
forall (a:ad) (y:A), MapPut_behind A m a y = MapMerge A (M1 A a y) m.
Proof.
intros. apply mapcanon_unique. exact (MapPut_behind_canon A m H a y).
apply MapMerge_canon. apply M1_canon.
assumption.
apply MapPut_behind_as_Merge.
Qed.
Lemma MapMerge_empty_m_c : forall m:Map A, MapMerge A (M0 A) m = m.
Proof.
trivial.
Qed.
Lemma MapMerge_assoc_c :
forall m m' m'':Map A,
mapcanon A m ->
mapcanon A m' ->
mapcanon A m'' ->
MapMerge A (MapMerge A m m') m'' = MapMerge A m (MapMerge A m' m'').
Proof.
intros. apply mapcanon_unique.
apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
apply MapMerge_assoc.
Qed.
Lemma MapMerge_idempotent_c :
forall m:Map A, mapcanon A m -> MapMerge A m m = m.
Proof.
intros. apply mapcanon_unique. apply MapMerge_canon; assumption.
assumption.
apply MapMerge_idempotent.
Qed.
Lemma MapMerge_RestrTo_l_c :
forall m m' m'':Map A,
mapcanon A m ->
mapcanon A m'' ->
MapMerge A (MapDomRestrTo A A m m') m'' =
MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'').
Proof.
intros. apply mapcanon_unique. apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
assumption.
apply MapDomRestrTo_canon; apply MapMerge_canon; assumption.
apply MapMerge_RestrTo_l.
Qed.
Lemma MapRemove_as_RestrBy_c :
forall m:Map A,
mapcanon A m ->
forall (a:ad) (y:B), MapRemove A m a = MapDomRestrBy A B m (M1 B a y).
Proof.
intros. apply mapcanon_unique. apply MapRemove_canon; assumption.
apply MapDomRestrBy_canon; assumption.
apply MapRemove_as_RestrBy.
Qed.
Lemma MapDomRestrTo_assoc_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
MapDomRestrTo A B m (MapDomRestrTo B C m' m'').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon; try assumption.
apply MapDomRestrTo_canon; try assumption.
apply MapDomRestrTo_canon; try assumption.
apply MapDomRestrTo_assoc.
Qed.
Lemma MapDomRestrTo_idempotent_c :
forall m:Map A, mapcanon A m -> MapDomRestrTo A A m m = m.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
assumption.
apply MapDomRestrTo_idempotent.
Qed.
Lemma MapDomRestrTo_Dom_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
MapDomRestrTo A B m m' = MapDomRestrTo A unit m (MapDom B m').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_Dom.
Qed.
Lemma MapDomRestrBy_Dom_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
MapDomRestrBy A B m m' = MapDomRestrBy A unit m (MapDom B m').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_Dom.
Qed.
Lemma MapDomRestrBy_By_c :
forall (m:Map A) (m' m'':Map B),
mapcanon A m ->
MapDomRestrBy A B (MapDomRestrBy A B m m') m'' =
MapDomRestrBy A B m (MapMerge B m' m'').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon; try assumption.
apply MapDomRestrBy_canon; try assumption.
apply MapDomRestrBy_canon; try assumption.
apply MapDomRestrBy_By.
Qed.
Lemma MapDomRestrBy_By_comm_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrBy A C (MapDomRestrBy A B m m') m'' =
MapDomRestrBy A B (MapDomRestrBy A C m m'') m'.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_canon. apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_By_comm.
Qed.
Lemma MapDomRestrBy_To_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
MapDomRestrTo A B m (MapDomRestrBy B C m' m'').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrBy_To.
Qed.
Lemma MapDomRestrBy_To_comm_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
MapDomRestrTo A B (MapDomRestrBy A C m m'') m'.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_canon. apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_To_comm.
Qed.
Lemma MapDomRestrTo_By_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
MapDomRestrTo A C m (MapDomRestrBy C B m'' m').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
apply MapDomRestrBy_canon; assumption.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_By.
Qed.
Lemma MapDomRestrTo_By_comm_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
MapDomRestrBy A B (MapDomRestrTo A C m m'') m'.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_canon. apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_By_comm.
Qed.
Lemma MapDomRestrTo_To_comm_c :
forall (m:Map A) (m':Map B) (m'':Map C),
mapcanon A m ->
MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
MapDomRestrTo A B (MapDomRestrTo A C m m'') m'.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_canon. apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_To_comm.
Qed.
Lemma MapMerge_DomRestrTo_c :
forall (m m':Map A) (m'':Map B),
mapcanon A m ->
mapcanon A m' ->
MapDomRestrTo A B (MapMerge A m m') m'' =
MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
apply MapMerge_canon; assumption.
apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
apply MapDomRestrTo_canon; assumption.
apply MapMerge_DomRestrTo.
Qed.
Lemma MapMerge_DomRestrBy_c :
forall (m m':Map A) (m'':Map B),
mapcanon A m ->
mapcanon A m' ->
MapDomRestrBy A B (MapMerge A m m') m'' =
MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'').
Proof.
intros. apply mapcanon_unique. apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
apply MapDomRestrBy_canon; assumption.
apply MapMerge_DomRestrBy.
Qed.
Lemma MapDelta_nilpotent_c :
forall m:Map A, mapcanon A m -> MapDelta A m m = M0 A.
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply M0_canon.
apply MapDelta_nilpotent.
Qed.
Lemma MapDelta_as_Merge_c :
forall m m':Map A,
mapcanon A m ->
mapcanon A m' ->
MapDelta A m m' =
MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m).
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply MapMerge_canon; apply MapDomRestrBy_canon; assumption.
apply MapDelta_as_Merge.
Qed.
Lemma MapDelta_as_DomRestrBy_c :
forall m m':Map A,
mapcanon A m ->
mapcanon A m' ->
MapDelta A m m' =
MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m').
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
apply MapDelta_as_DomRestrBy.
Qed.
Lemma MapDelta_as_DomRestrBy_2_c :
forall m m':Map A,
mapcanon A m ->
mapcanon A m' ->
MapDelta A m m' =
MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m).
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
apply MapDelta_as_DomRestrBy_2.
Qed.
Lemma MapDelta_sym_c :
forall m m':Map A,
mapcanon A m -> mapcanon A m' -> MapDelta A m m' = MapDelta A m' m.
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply MapDelta_canon; assumption. apply MapDelta_sym.
Qed.
Lemma MapDom_Split_1_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
m = MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m').
Proof.
intros. apply mapcanon_unique. assumption.
apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
apply MapDomRestrBy_canon; assumption.
apply MapDom_Split_1.
Qed.
Lemma MapDom_Split_2_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
m = MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m').
Proof.
intros. apply mapcanon_unique. assumption.
apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
apply MapDomRestrTo_canon; assumption.
apply MapDom_Split_2.
Qed.
Lemma MapDom_Split_3_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') =
M0 A.
Proof.
intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
apply MapDomRestrTo_canon; assumption.
apply M0_canon.
apply MapDom_Split_3.
Qed.
Lemma Map_of_alist_of_Map_c :
forall m:Map A, mapcanon A m -> Map_of_alist A (alist_of_Map A m) = m.
Proof.
intros. apply mapcanon_unique; try assumption. apply Map_of_alist_canon.
apply Map_of_alist_of_Map.
Qed.
Lemma alist_of_Map_of_alist_c :
forall l:alist A,
alist_sorted_2 A l -> alist_of_Map A (Map_of_alist A l) = l.
Proof.
intros. apply alist_canonical. apply alist_of_Map_of_alist.
apply alist_of_Map_sorts2.
assumption.
Qed.
Lemma MapSubset_antisym_c :
forall (m:Map A) (m':Map B),
mapcanon A m ->
mapcanon B m' ->
MapSubset A B m m' -> MapSubset B A m' m -> MapDom A m = MapDom B m'.
Proof.
intros. apply (mapcanon_unique unit). apply MapDom_canon; assumption.
apply MapDom_canon; assumption.
apply MapSubset_antisym; assumption.
Qed.
Lemma FSubset_antisym_c :
forall s s':FSet,
mapcanon unit s ->
mapcanon unit s' -> MapSubset _ _ s s' -> MapSubset _ _ s' s -> s = s'.
Proof.
intros. apply (mapcanon_unique unit); try assumption. apply FSubset_antisym; assumption.
Qed.
Lemma MapDisjoint_empty_c :
forall m:Map A, mapcanon A m -> MapDisjoint A A m m -> m = M0 A.
Proof.
intros. apply mapcanon_unique; try assumption; try apply M0_canon.
apply MapDisjoint_empty; assumption.
Qed.
Lemma MapDelta_disjoint_c :
forall m m':Map A,
mapcanon A m ->
mapcanon A m' ->
MapDisjoint A A m m' -> MapDelta A m m' = MapMerge A m m'.
Proof.
intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
apply MapMerge_canon; assumption. apply MapDelta_disjoint; assumption.
Qed.
End MapC.
Lemma FSetDelta_assoc_c :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s' ->
mapcanon unit s'' ->
MapDelta _ (MapDelta _ s s') s'' = MapDelta _ s (MapDelta _ s' s'').
Proof.
intros. apply (mapcanon_unique unit). apply MapDelta_canon. apply MapDelta_canon; assumption.
assumption.
apply MapDelta_canon. assumption.
apply MapDelta_canon; assumption.
apply FSetDelta_assoc; assumption.
Qed.
Lemma FSet_ext_c :
forall s s':FSet,
mapcanon unit s ->
mapcanon unit s' -> (forall a:ad, in_FSet a s = in_FSet a s') -> s = s'.
Proof.
intros. apply (mapcanon_unique unit); try assumption. apply FSet_ext. assumption.
Qed.
Lemma FSetUnion_comm_c :
forall s s':FSet,
mapcanon unit s -> mapcanon unit s' -> FSetUnion s s' = FSetUnion s' s.
Proof.
intros.
apply (mapcanon_unique unit);
try (unfold FSetUnion in |- *; apply MapMerge_canon; assumption).
apply FSetUnion_comm.
Qed.
Lemma FSetUnion_assoc_c :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s' ->
mapcanon unit s'' ->
FSetUnion (FSetUnion s s') s'' = FSetUnion s (FSetUnion s' s'').
Proof.
exact (MapMerge_assoc_c unit).
Qed.
Lemma FSetUnion_M0_s_c : forall s:FSet, FSetUnion (M0 unit) s = s.
Proof.
exact (MapMerge_empty_m_c unit).
Qed.
Lemma FSetUnion_s_M0_c : forall s:FSet, FSetUnion s (M0 unit) = s.
Proof.
exact (MapMerge_m_empty_1 unit).
Qed.
Lemma FSetUnion_idempotent :
forall s:FSet, mapcanon unit s -> FSetUnion s s = s.
Proof.
exact (MapMerge_idempotent_c unit).
Qed.
Lemma FSetInter_comm_c :
forall s s':FSet,
mapcanon unit s -> mapcanon unit s' -> FSetInter s s' = FSetInter s' s.
Proof.
intros.
apply (mapcanon_unique unit);
try (unfold FSetInter in |- *; apply MapDomRestrTo_canon; assumption).
apply FSetInter_comm.
Qed.
Lemma FSetInter_assoc_c :
forall s s' s'':FSet,
mapcanon unit s ->
FSetInter (FSetInter s s') s'' = FSetInter s (FSetInter s' s'').
Proof.
exact (MapDomRestrTo_assoc_c unit unit unit).
Qed.
Lemma FSetInter_M0_s_c : forall s:FSet, FSetInter (M0 unit) s = M0 unit.
Proof.
trivial.
Qed.
Lemma FSetInter_s_M0_c : forall s:FSet, FSetInter s (M0 unit) = M0 unit.
Proof.
exact (MapDomRestrTo_m_empty_1 unit unit).
Qed.
Lemma FSetInter_idempotent :
forall s:FSet, mapcanon unit s -> FSetInter s s = s.
Proof.
exact (MapDomRestrTo_idempotent_c unit).
Qed.
Lemma FSetUnion_Inter_l_c :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s'' ->
FSetUnion (FSetInter s s') s'' =
FSetInter (FSetUnion s s'') (FSetUnion s' s'').
Proof.
intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
unfold FSetInter in |- *; unfold FSetUnion in |- *;
apply MapDomRestrTo_canon; apply MapMerge_canon;
assumption.
apply FSetUnion_Inter_l.
Qed.
Lemma FSetUnion_Inter_r :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s' ->
FSetUnion s (FSetInter s' s'') =
FSetInter (FSetUnion s s') (FSetUnion s s'').
Proof.
intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
unfold FSetInter in |- *; unfold FSetUnion in |- *;
apply MapDomRestrTo_canon; apply MapMerge_canon;
assumption.
apply FSetUnion_Inter_r.
Qed.
Lemma FSetInter_Union_l_c :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s' ->
FSetInter (FSetUnion s s') s'' =
FSetUnion (FSetInter s s'') (FSetInter s' s'').
Proof.
intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
apply MapDomRestrTo_canon; try assumption. unfold FSetUnion in |- *.
apply MapMerge_canon; assumption.
unfold FSetUnion in |- *; unfold FSetInter in |- *; apply MapMerge_canon;
apply MapDomRestrTo_canon; assumption.
apply FSetInter_Union_l.
Qed.
Lemma FSetInter_Union_r :
forall s s' s'':FSet,
mapcanon unit s ->
mapcanon unit s' ->
FSetInter s (FSetUnion s' s'') =
FSetUnion (FSetInter s s') (FSetInter s s'').
Proof.
intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
apply MapDomRestrTo_canon; try assumption.
unfold FSetUnion in |- *. apply MapMerge_canon; unfold FSetInter in |- *; apply MapDomRestrTo_canon;
assumption.
apply FSetInter_Union_r.
Qed.
|