1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Specif.v,v 1.25.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
Set Implicit Arguments.
(** Basic specifications : Sets containing logical information *)
Require Import Notations.
Require Import Datatypes.
Require Import Logic.
(** Subsets *)
(** [(sig A P)], or more suggestively [{x:A | (P x)}], denotes the subset
of elements of the Set [A] which satisfy the predicate [P].
Similarly [(sig2 A P Q)], or [{x:A | (P x) & (Q x)}], denotes the subset
of elements of the Set [A] which satisfy both [P] and [Q]. *)
Inductive sig (A:Set) (P:A -> Prop) : Set :=
exist : forall x:A, P x -> sig (A:=A) P.
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
exist2 : forall x:A, P x -> Q x -> sig2 (A:=A) P Q.
(** [(sigS A P)], or more suggestively [{x:A & (P x)}], is a subtle variant
of subset where [P] is now of type [Set].
Similarly for [(sigS2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *)
Inductive sigS (A:Set) (P:A -> Set) : Set :=
existS : forall x:A, P x -> sigS (A:=A) P.
Inductive sigS2 (A:Set) (P Q:A -> Set) : Set :=
existS2 : forall x:A, P x -> Q x -> sigS2 (A:=A) P Q.
Arguments Scope sig [type_scope type_scope].
Arguments Scope sig2 [type_scope type_scope type_scope].
Arguments Scope sigS [type_scope type_scope].
Arguments Scope sigS2 [type_scope type_scope type_scope].
Notation "{ x : A | P }" := (sig (fun x:A => P)) : type_scope.
Notation "{ x : A | P & Q }" := (sig2 (fun x:A => P) (fun x:A => Q)) :
type_scope.
Notation "{ x : A & P }" := (sigS (fun x:A => P)) : type_scope.
Notation "{ x : A & P & Q }" := (sigS2 (fun x:A => P) (fun x:A => Q)) :
type_scope.
Add Printing Let sig.
Add Printing Let sig2.
Add Printing Let sigS.
Add Printing Let sigS2.
(** Projections of sig *)
Section Subset_projections.
Variable A : Set.
Variable P : A -> Prop.
Definition proj1_sig (e:sig P) := match e with
| exist a b => a
end.
Definition proj2_sig (e:sig P) :=
match e return P (proj1_sig e) with
| exist a b => b
end.
End Subset_projections.
(** Projections of sigS *)
Section Projections.
Variable A : Set.
Variable P : A -> Set.
(** An element [y] of a subset [{x:A & (P x)}] is the pair of an [a] of
type [A] and of a proof [h] that [a] satisfies [P].
Then [(projS1 y)] is the witness [a]
and [(projS2 y)] is the proof of [(P a)] *)
Definition projS1 (x:sigS P) : A := match x with
| existS a _ => a
end.
Definition projS2 (x:sigS P) : P (projS1 x) :=
match x return P (projS1 x) with
| existS _ h => h
end.
End Projections.
(** Extended_booleans *)
Inductive sumbool (A B:Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}
where "{ A } + { B }" := (sumbool A B) : type_scope.
Add Printing If sumbool.
Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft : A -> A + {B}
| inright : B -> A + {B}
where "A + { B }" := (sumor A B) : type_scope.
Add Printing If sumor.
(** Choice *)
Section Choice_lemmas.
(** The following lemmas state various forms of the axiom of choice *)
Variables S S' : Set.
Variable R : S -> S' -> Prop.
Variable R' : S -> S' -> Set.
Variables R1 R2 : S -> Prop.
Lemma Choice :
(forall x:S, sig (fun y:S' => R x y)) ->
sig (fun f:S -> S' => forall z:S, R z (f z)).
Proof.
intro H.
exists (fun z:S => match H z with
| exist y _ => y
end).
intro z; destruct (H z); trivial.
Qed.
Lemma Choice2 :
(forall x:S, sigS (fun y:S' => R' x y)) ->
sigS (fun f:S -> S' => forall z:S, R' z (f z)).
Proof.
intro H.
exists (fun z:S => match H z with
| existS y _ => y
end).
intro z; destruct (H z); trivial.
Qed.
Lemma bool_choice :
(forall x:S, {R1 x} + {R2 x}) ->
sig
(fun f:S -> bool =>
forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x).
Proof.
intro H.
exists
(fun z:S => match H z with
| left _ => true
| right _ => false
end).
intro z; destruct (H z); auto.
Qed.
End Choice_lemmas.
(** A result of type [(Exc A)] is either a normal value of type [A] or
an [error] :
[Inductive Exc [A:Set] : Set := value : A->(Exc A) | error : (Exc A)]
it is implemented using the option type. *)
Definition Exc := option.
Definition value := Some.
Definition error := @None.
Implicit Arguments error [A].
Definition except := False_rec. (* for compatibility with previous versions *)
Implicit Arguments except [P].
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Proof.
intros A C h1 h2.
apply False_rec.
apply (h2 h1).
Qed.
Hint Resolve left right inleft inright: core v62.
(** Sigma Type at Type level [sigT] *)
Inductive sigT (A:Type) (P:A -> Type) : Type :=
existT : forall x:A, P x -> sigT (A:=A) P.
Section projections_sigT.
Variable A : Type.
Variable P : A -> Type.
Definition projT1 (H:sigT P) : A := match H with
| existT x _ => x
end.
Definition projT2 : forall x:sigT P, P (projT1 x) :=
fun H:sigT P => match H return P (projT1 H) with
| existT x h => h
end.
End projections_sigT.
|