summaryrefslogtreecommitdiff
path: root/theories/Init/Nat.v
blob: afb46436c00166e9d7fee53921e45b7ffdfdbbec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Notations Logic Datatypes.

Local Open Scope nat_scope.

(**********************************************************************)
(** * Peano natural numbers, definitions of operations *)
(**********************************************************************)

(** This file is meant to be used as a whole module,
    without importing it, leading to qualified definitions
    (e.g. Nat.pred) *)

Definition t := nat.

(** ** Constants *)

Definition zero := 0.
Definition one := 1.
Definition two := 2.

(** ** Basic operations *)

Definition succ := S.

Definition pred n :=
  match n with
    | 0 => n
    | S u => u
  end.

Fixpoint add n m :=
  match n with
  | 0 => m
  | S p => S (p + m)
  end

where "n + m" := (add n m) : nat_scope.

Definition double n := n + n.

Fixpoint mul n m :=
  match n with
  | 0 => 0
  | S p => m + p * m
  end

where "n * m" := (mul n m) : nat_scope.

(** Truncated subtraction: [n-m] is [0] if [n<=m] *)

Fixpoint sub n m :=
  match n, m with
  | S k, S l => k - l
  | _, _ => n
  end

where "n - m" := (sub n m) : nat_scope.

(** ** Comparisons *)

Fixpoint eqb n m : bool :=
  match n, m with
    | 0, 0 => true
    | 0, S _ => false
    | S _, 0 => false
    | S n', S m' => eqb n' m'
  end.

Fixpoint leb n m : bool :=
  match n, m with
    | 0, _ => true
    | _, 0 => false
    | S n', S m' => leb n' m'
  end.

Definition ltb n m := leb (S n) m.

Infix "=?" := eqb (at level 70) : nat_scope.
Infix "<=?" := leb (at level 70) : nat_scope.
Infix "<?" := ltb (at level 70) : nat_scope.

Fixpoint compare n m : comparison :=
  match n, m with
   | 0, 0 => Eq
   | 0, S _ => Lt
   | S _, 0 => Gt
   | S n', S m' => compare n' m'
  end.

Infix "?=" := compare (at level 70) : nat_scope.

(** ** Minimum, maximum *)

Fixpoint max n m :=
  match n, m with
    | 0, _ => m
    | S n', 0 => n
    | S n', S m' => S (max n' m')
  end.

Fixpoint min n m :=
  match n, m with
    | 0, _ => 0
    | S n', 0 => 0
    | S n', S m' => S (min n' m')
  end.

(** ** Parity tests *)

Fixpoint even n : bool :=
  match n with
    | 0 => true
    | 1 => false
    | S (S n') => even n'
  end.

Definition odd n := negb (even n).

(** ** Power *)

Fixpoint pow n m :=
  match m with
    | 0 => 1
    | S m => n * (n^m)
  end

where "n ^ m" := (pow n m) : nat_scope.

(** ** Euclidean division *)

(** This division is linear and tail-recursive.
    In [divmod], [y] is the predecessor of the actual divisor,
    and [u] is [y] minus the real remainder
*)

Fixpoint divmod x y q u :=
  match x with
    | 0 => (q,u)
    | S x' => match u with
                | 0 => divmod x' y (S q) y
                | S u' => divmod x' y q u'
              end
  end.

Definition div x y :=
  match y with
    | 0 => y
    | S y' => fst (divmod x y' 0 y')
  end.

Definition modulo x y :=
  match y with
    | 0 => y
    | S y' => y' - snd (divmod x y' 0 y')
  end.

Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.


(** ** Greatest common divisor *)

(** We use Euclid algorithm, which is normally not structural,
    but Coq is now clever enough to accept this (behind modulo
    there is a subtraction, which now preserves being a subterm)
*)

Fixpoint gcd a b :=
  match a with
   | O => b
   | S a' => gcd (b mod (S a')) (S a')
  end.

(** ** Square *)

Definition square n := n * n.

(** ** Square root *)

(** The following square root function is linear (and tail-recursive).
  With Peano representation, we can't do better. For faster algorithm,
  see Psqrt/Zsqrt/Nsqrt...

  We search the square root of n = k + p^2 + (q - r)
  with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
  looking for the square root of n = k. Then we progressively
  decrease k and r. When k = S k' and r=0, it means we can use (S p)
  as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
  When k reaches 0, we have found the biggest p^2 square contained
  in n, hence the square root of n is p.
*)

Fixpoint sqrt_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
                | S r' => sqrt_iter k' p q r'
              end
  end.

Definition sqrt n := sqrt_iter n 0 0 0.

(** ** Log2 *)

(** This base-2 logarithm is linear and tail-recursive.

  In [log2_iter], we maintain the logarithm [p] of the counter [q],
  while [r] is the distance between [q] and the next power of 2,
  more precisely [q + S r = 2^(S p)] and [r<2^p]. At each
  recursive call, [q] goes up while [r] goes down. When [r]
  is 0, we know that [q] has almost reached a power of 2,
  and we increase [p] at the next call, while resetting [r]
  to [q].

  Graphically (numbers are [q], stars are [r]) :

<<
                    10
                  9
                8
              7   *
            6       *
          5           ...
        4
      3   *
    2       *
  1   *       *
0   *   *       *
>>

  We stop when [k], the global downward counter reaches 0.
  At that moment, [q] is the number we're considering (since
  [k+q] is invariant), and [p] its logarithm.
*)

Fixpoint log2_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => log2_iter k' (S p) (S q) q
                | S r' => log2_iter k' p (S q) r'
              end
  end.

Definition log2 n := log2_iter (pred n) 0 1 0.

(** Iterator on natural numbers *)

Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=
 nat_rect (fun _ => A) x (fun _ => f) n.

(** Bitwise operations *)

(** We provide here some bitwise operations for unary numbers.
  Some might be really naive, they are just there for fullfiling
  the same interface as other for natural representations. As
  soon as binary representations such as NArith are available,
  it is clearly better to convert to/from them and use their ops.
*)

Fixpoint div2 n :=
  match n with
  | 0 => 0
  | S 0 => 0
  | S (S n') => S (div2 n')
  end.

Fixpoint testbit a n : bool :=
 match n with
   | 0 => odd a
   | S n => testbit (div2 a) n
 end.

Definition shiftl a := nat_rect _ a (fun _ => double).
Definition shiftr a := nat_rect _ a (fun _ => div2).

Fixpoint bitwise (op:bool->bool->bool) n a b :=
 match n with
  | 0 => 0
  | S n' =>
    (if op (odd a) (odd b) then 1 else 0) +
    2*(bitwise op n' (div2 a) (div2 b))
 end.

Definition land a b := bitwise andb a a b.
Definition lor a b := bitwise orb (max a b) a b.
Definition ldiff a b := bitwise (fun b b' => andb b (negb b')) a a b.
Definition lxor a b := bitwise xorb (max a b) a b.