summaryrefslogtreecommitdiff
path: root/theories/Init/Logic.v
blob: d2971552d4e56811a6035621066e3a6b7a71f5b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Set Implicit Arguments.

Require Export Notations.

Notation "A -> B" := (forall (_ : A), B) : type_scope.

(** * Propositional connectives *)

(** [True] is the always true proposition *)

Inductive True : Prop :=
  I : True.

(** [False] is the always false proposition *)
Inductive False : Prop :=.

(** [proof_admitted] is used to implement the admit tactic *)
Axiom proof_admitted : False.

(** [not A], written [~A], is the negation of [A] *)
Definition not (A:Prop) := A -> False.

Notation "~ x" := (not x) : type_scope.

Hint Unfold not: core.

  (** [and A B], written [A /\ B], is the conjunction of [A] and [B]

      [conj p q] is a proof of [A /\ B] as soon as
      [p] is a proof of [A] and [q] a proof of [B]

      [proj1] and [proj2] are first and second projections of a conjunction *)

Inductive and (A B:Prop) : Prop :=
  conj : A -> B -> A /\ B

where "A /\ B" := (and A B) : type_scope.

Section Conjunction.

  Variables A B : Prop.

  Theorem proj1 : A /\ B -> A.
  Proof.
    destruct 1; trivial.
  Qed.

  Theorem proj2 : A /\ B -> B.
  Proof.
    destruct 1; trivial.
  Qed.

End Conjunction.

(** [or A B], written [A \/ B], is the disjunction of [A] and [B] *)

Inductive or (A B:Prop) : Prop :=
  | or_introl : A -> A \/ B
  | or_intror : B -> A \/ B

where "A \/ B" := (or A B) : type_scope.

Arguments or_introl [A B] _, [A] B _.
Arguments or_intror [A B] _, A [B] _.

(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *)

Definition iff (A B:Prop) := (A -> B) /\ (B -> A).

Notation "A <-> B" := (iff A B) : type_scope.

Section Equivalence.

Theorem iff_refl : forall A:Prop, A <-> A.
  Proof.
    split; auto.
  Qed.

Theorem iff_trans : forall A B C:Prop, (A <-> B) -> (B <-> C) -> (A <-> C).
  Proof.
    intros A B C [H1 H2] [H3 H4]; split; auto.
  Qed.

Theorem iff_sym : forall A B:Prop, (A <-> B) -> (B <-> A).
  Proof.
    intros A B [H1 H2]; split; auto.
  Qed.

End Equivalence.

Hint Unfold iff: extcore.

(** Backward direction of the equivalences above does not need assumptions *)

Theorem and_iff_compat_l : forall A B C : Prop,
  (B <-> C) -> (A /\ B <-> A /\ C).
Proof.
  intros ? ? ? [Hl Hr]; split; intros [? ?]; (split; [ assumption | ]);
  [apply Hl | apply Hr]; assumption.
Qed.

Theorem and_iff_compat_r : forall A B C : Prop,
  (B <-> C) -> (B /\ A <-> C /\ A).
Proof.
  intros ? ? ? [Hl Hr]; split; intros [? ?]; (split; [ | assumption ]);
  [apply Hl | apply Hr]; assumption.
Qed.

Theorem or_iff_compat_l : forall A B C : Prop,
  (B <-> C) -> (A \/ B <-> A \/ C).
Proof.
  intros ? ? ? [Hl Hr]; split; (intros [?|?]; [left; assumption| right]);
  [apply Hl | apply Hr]; assumption.
Qed.

Theorem or_iff_compat_r : forall A B C : Prop,
  (B <-> C) -> (B \/ A <-> C \/ A).
Proof.
  intros ? ? ? [Hl Hr]; split; (intros [?|?]; [left| right; assumption]);
  [apply Hl | apply Hr]; assumption.
Qed.

(** Some equivalences *)

Theorem neg_false : forall A : Prop, ~ A <-> (A <-> False).
Proof.
  intro A; unfold not; split.
  - intro H; split; [exact H | intro H1; elim H1].
  - intros [H _]; exact H.
Qed.

Theorem and_cancel_l : forall A B C : Prop,
  (B -> A) -> (C -> A) -> ((A /\ B <-> A /\ C) <-> (B <-> C)).
Proof.
  intros A B C Hl Hr.
  split; [ | apply and_iff_compat_l]; intros [HypL HypR]; split; intros.
  + apply HypL; split; [apply Hl | ]; assumption.
  + apply HypR; split; [apply Hr | ]; assumption.
Qed.

Theorem and_cancel_r : forall A B C : Prop,
  (B -> A) -> (C -> A) -> ((B /\ A <-> C /\ A) <-> (B <-> C)).
Proof.
  intros A B C Hl Hr.
  split; [ | apply and_iff_compat_r]; intros [HypL HypR]; split; intros.
  + apply HypL; split; [ | apply Hl ]; assumption.
  + apply HypR; split; [ | apply Hr ]; assumption.
Qed.

Theorem and_comm : forall A B : Prop, A /\ B <-> B /\ A.
Proof.
  intros; split; intros [? ?]; split; assumption.
Qed.

Theorem and_assoc : forall A B C : Prop, (A /\ B) /\ C <-> A /\ B /\ C.
Proof.
  intros; split; [ intros [[? ?] ?]| intros [? [? ?]]]; repeat split; assumption.
Qed.

Theorem or_cancel_l : forall A B C : Prop,
  (B -> ~ A) -> (C -> ~ A) -> ((A \/ B <-> A \/ C) <-> (B <-> C)).
Proof.
  intros ? ? ? Fl Fr; split; [ | apply or_iff_compat_l]; intros [Hl Hr]; split; intros.
  { destruct Hl; [ right | destruct Fl | ]; assumption. }
  { destruct Hr; [ right | destruct Fr | ]; assumption. }
Qed.

Theorem or_cancel_r : forall A B C : Prop,
  (B -> ~ A) -> (C -> ~ A) -> ((B \/ A <-> C \/ A) <-> (B <-> C)).
Proof.
  intros ? ? ? Fl Fr; split; [ | apply or_iff_compat_r]; intros [Hl Hr]; split; intros.
  { destruct Hl; [ left | | destruct Fl ]; assumption. }
  { destruct Hr; [ left | | destruct Fr ]; assumption. }
Qed.

Theorem or_comm : forall A B : Prop, (A \/ B) <-> (B \/ A).
Proof.
  intros; split; (intros [? | ?]; [ right | left ]; assumption).
Qed.

Theorem or_assoc : forall A B C : Prop, (A \/ B) \/ C <-> A \/ B \/ C.
Proof.
  intros; split; [ intros [[?|?]|?]| intros [?|[?|?]]].
  + left; assumption.
  + right; left; assumption.
  + right; right; assumption.
  + left; left; assumption.
  + left; right; assumption.
  + right; assumption.
Qed.
Lemma iff_and : forall A B : Prop, (A <-> B) -> (A -> B) /\ (B -> A).
Proof.
  intros A B []; split; trivial.
Qed.

Lemma iff_to_and : forall A B : Prop, (A <-> B) <-> (A -> B) /\ (B -> A).
Proof.
  intros; split; intros [Hl Hr]; (split; intros; [ apply Hl | apply Hr]); assumption.
Qed.

(** [(IF_then_else P Q R)], written [IF P then Q else R] denotes
    either [P] and [Q], or [~P] and [Q] *)

Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
  (at level 200, right associativity) : type_scope.

(** * First-order quantifiers *)

(** [ex P], or simply [exists x, P x], or also [exists x:A, P x],
    expresses the existence of an [x] of some type [A] in [Set] which
    satisfies the predicate [P].  This is existential quantification.

    [ex2 P Q], or simply [exists2 x, P x & Q x], or also
    [exists2 x:A, P x & Q x], expresses the existence of an [x] of
    type [A] which satisfies both predicates [P] and [Q].

    Universal quantification is primitively written [forall x:A, Q]. By
    symmetry with existential quantification, the construction [all P]
    is provided too.
*)

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
  ex_intro : forall x:A, P x -> ex (A:=A) P.

Inductive ex2 (A:Type) (P Q:A -> Prop) : Prop :=
  ex_intro2 : forall x:A, P x -> Q x -> ex2 (A:=A) P Q.

Definition all (A:Type) (P:A -> Prop) := forall x:A, P x.

(* Rule order is important to give printing priority to fully typed exists *)

Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..))
  (at level 200, x binder, right associativity,
   format "'[' 'exists'  '/  ' x  ..  y ,  '/  ' p ']'")
  : type_scope.

Notation "'exists2' x , p & q" := (ex2 (fun x => p) (fun x => q))
  (at level 200, x ident, p at level 200, right associativity) : type_scope.
Notation "'exists2' x : t , p & q" := (ex2 (fun x:t => p) (fun x:t => q))
  (at level 200, x ident, t at level 200, p at level 200, right associativity,
    format "'[' 'exists2'  '/  ' x  :  t ,  '/  ' '[' p  &  '/' q ']' ']'")
  : type_scope.

(** Derived rules for universal quantification *)

Section universal_quantification.

  Variable A : Type.
  Variable P : A -> Prop.

  Theorem inst : forall x:A, all (fun x => P x) -> P x.
  Proof.
    unfold all; auto.
  Qed.

  Theorem gen : forall (B:Prop) (f:forall y:A, B -> P y), B -> all P.
  Proof.
    red; auto.
  Qed.

End universal_quantification.

(** * Equality *)

(** [eq x y], or simply [x=y] expresses the equality of [x] and
    [y]. Both [x] and [y] must belong to the same type [A].
    The definition is inductive and states the reflexivity of the equality.
    The others properties (symmetry, transitivity, replacement of
    equals by equals) are proved below. The type of [x] and [y] can be
    made explicit using the notation [x = y :> A]. This is Leibniz equality
    as it expresses that [x] and [y] are equal iff every property on
    [A] which is true of [x] is also true of [y] *)

Inductive eq (A:Type) (x:A) : A -> Prop :=
    eq_refl : x = x :>A

where "x = y :> A" := (@eq A x y) : type_scope.

Notation "x = y" := (x = y :>_) : type_scope.
Notation "x <> y  :> T" := (~ x = y :>T) : type_scope.
Notation "x <> y" := (x <> y :>_) : type_scope.

Arguments eq {A} x _.
Arguments eq_refl {A x} , [A] x.

Arguments eq_ind [A] x P _ y _.
Arguments eq_rec [A] x P _ y _.
Arguments eq_rect [A] x P _ y _.

Hint Resolve I conj or_introl or_intror : core. 
Hint Resolve eq_refl: core. 
Hint Resolve ex_intro ex_intro2: core.

Section Logic_lemmas.

  Theorem absurd : forall A C:Prop, A -> ~ A -> C.
  Proof.
    unfold not; intros A C h1 h2.
    destruct (h2 h1).
  Qed.

  Section equality.
    Variables A B : Type.
    Variable f : A -> B.
    Variables x y z : A.

    Theorem eq_sym : x = y -> y = x.
    Proof.
      destruct 1; trivial.
    Defined.

    Theorem eq_trans : x = y -> y = z -> x = z.
    Proof.
      destruct 2; trivial.
    Defined.

    Theorem f_equal : x = y -> f x = f y.
    Proof.
      destruct 1; trivial.
    Defined.

    Theorem not_eq_sym : x <> y -> y <> x.
    Proof.
      red; intros h1 h2; apply h1; destruct h2; trivial.
    Qed.

  End equality.

  Definition eq_ind_r :
    forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.
    intros A x P H y H0. elim eq_sym with (1 := H0); assumption.
  Defined.

  Definition eq_rec_r :
    forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y.
    intros A x P H y H0; elim eq_sym with (1 := H0); assumption.
  Defined.

  Definition eq_rect_r :
    forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.
    intros A x P H y H0; elim eq_sym with (1 := H0); assumption.
  Defined.
End Logic_lemmas.

Module EqNotations.
  Notation "'rew' H 'in' H'" := (eq_rect _ _ H' _ H)
    (at level 10, H' at level 10,
     format "'[' 'rew'  H  in  '/' H' ']'").
  Notation "'rew' [ P ] H 'in' H'" := (eq_rect _ P H' _ H)
    (at level 10, H' at level 10,
     format "'[' 'rew'  [ P ]  '/    ' H  in  '/' H' ']'").
  Notation "'rew' <- H 'in' H'" := (eq_rect_r _ H' H)
    (at level 10, H' at level 10,
     format "'[' 'rew'  <-  H  in  '/' H' ']'").
  Notation "'rew' <- [ P ] H 'in' H'" := (eq_rect_r P H' H)
    (at level 10, H' at level 10,
     format "'[' 'rew'  <-  [ P ]  '/    ' H  in  '/' H' ']'").
  Notation "'rew' -> H 'in' H'" := (eq_rect _ _ H' _ H)
    (at level 10, H' at level 10, only parsing).
  Notation "'rew' -> [ P ] H 'in' H'" := (eq_rect _ P H' _ H)
    (at level 10, H' at level 10, only parsing).

End EqNotations.

Import EqNotations.

Lemma rew_opp_r : forall A (P:A->Type) (x y:A) (H:x=y) (a:P y), rew H in rew <- H in a = a.
Proof.
intros.
destruct H.
reflexivity.
Defined.

Lemma rew_opp_l : forall A (P:A->Type) (x y:A) (H:x=y) (a:P x), rew <- H in rew H in a = a.
Proof.
intros.
destruct H.
reflexivity.
Defined.

Theorem f_equal2 :
  forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1)
    (x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2.
Proof.
  destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal3 :
  forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1)
    (x2 y2:A2) (x3 y3:A3),
    x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
Proof.
  destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal4 :
  forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B)
    (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4),
    x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> f x1 x2 x3 x4 = f y1 y2 y3 y4.
Proof.
  destruct 1; destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal5 :
  forall (A1 A2 A3 A4 A5 B:Type) (f:A1 -> A2 -> A3 -> A4 -> A5 -> B)
    (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4) (x5 y5:A5),
    x1 = y1 ->
    x2 = y2 ->
    x3 = y3 -> x4 = y4 -> x5 = y5 -> f x1 x2 x3 x4 x5 = f y1 y2 y3 y4 y5.
Proof.
  destruct 1; destruct 1; destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal_compose : forall A B C (a b:A) (f:A->B) (g:B->C) (e:a=b),
  f_equal g (f_equal f e) = f_equal (fun a => g (f a)) e.
Proof.
  destruct e. reflexivity.
Defined.

(** The goupoid structure of equality *)

Theorem eq_trans_refl_l : forall A (x y:A) (e:x=y), eq_trans eq_refl e = e.
Proof.
  destruct e. reflexivity.
Defined.

Theorem eq_trans_refl_r : forall A (x y:A) (e:x=y), eq_trans e eq_refl = e.
Proof.
  destruct e. reflexivity.
Defined.

Theorem eq_sym_involutive : forall A (x y:A) (e:x=y), eq_sym (eq_sym e) = e.
Proof.
  destruct e; reflexivity.
Defined.

Theorem eq_trans_sym_inv_l : forall A (x y:A) (e:x=y), eq_trans (eq_sym e) e = eq_refl.
Proof.
  destruct e; reflexivity.
Defined.

Theorem eq_trans_sym_inv_r : forall A (x y:A) (e:x=y), eq_trans e (eq_sym e) = eq_refl.
Proof.
  destruct e; reflexivity.
Defined.

Theorem eq_trans_assoc : forall A (x y z t:A) (e:x=y) (e':y=z) (e'':z=t),
  eq_trans e (eq_trans e' e'') = eq_trans (eq_trans e e') e''.
Proof.
  destruct e''; reflexivity.
Defined.

(** Extra properties of equality *)

Theorem eq_id_comm_l : forall A (f:A->A) (Hf:forall a, a = f a), forall a, f_equal f (Hf a) = Hf (f a).
Proof.
  intros.
  unfold f_equal.
  rewrite <- (eq_trans_sym_inv_l (Hf a)).
  destruct (Hf a) at 1 2.
  destruct (Hf a).
  reflexivity.
Defined.

Theorem eq_id_comm_r : forall A (f:A->A) (Hf:forall a, f a = a), forall a, f_equal f (Hf a) = Hf (f a).
Proof.
  intros.
  unfold f_equal.
  rewrite <- (eq_trans_sym_inv_l (Hf (f (f a)))).
  set (Hfsymf := fun a => eq_sym (Hf a)).
  change (eq_sym (Hf (f (f a)))) with (Hfsymf (f (f a))).
  pattern (Hfsymf (f (f a))).
  destruct (eq_id_comm_l f Hfsymf (f a)).
  destruct (eq_id_comm_l f Hfsymf a).
  unfold Hfsymf.
  destruct (Hf a). simpl.
  rewrite eq_trans_refl_l.
  reflexivity.
Defined.

Lemma eq_trans_map_distr : forall A B x y z (f:A->B) (e:x=y) (e':y=z), f_equal f (eq_trans e e') = eq_trans (f_equal f e) (f_equal f e').
Proof.
destruct e'.
reflexivity.
Defined.

Lemma eq_sym_map_distr : forall A B (x y:A) (f:A->B) (e:x=y), eq_sym (f_equal f e) = f_equal f (eq_sym e).
Proof.
destruct e.
reflexivity.
Defined.

Lemma eq_trans_sym_distr : forall A (x y z:A) (e:x=y) (e':y=z), eq_sym (eq_trans e e') = eq_trans (eq_sym e') (eq_sym e).
Proof.
destruct e, e'.
reflexivity.
Defined.

(* Aliases *)

Notation sym_eq := eq_sym (compat "8.3").
Notation trans_eq := eq_trans (compat "8.3").
Notation sym_not_eq := not_eq_sym (compat "8.3").

Notation refl_equal := eq_refl (compat "8.3").
Notation sym_equal := eq_sym (compat "8.3").
Notation trans_equal := eq_trans (compat "8.3").
Notation sym_not_equal := not_eq_sym (compat "8.3").

Hint Immediate eq_sym not_eq_sym: core.

(** Basic definitions about relations and properties *)

Definition subrelation (A B : Type) (R R' : A->B->Prop) :=
  forall x y, R x y -> R' x y.

Definition unique (A : Type) (P : A->Prop) (x:A) :=
  P x /\ forall (x':A), P x' -> x=x'.

Definition uniqueness (A:Type) (P:A->Prop) := forall x y, P x -> P y -> x = y.

(** Unique existence *)

Notation "'exists' ! x .. y , p" :=
  (ex (unique (fun x => .. (ex (unique (fun y => p))) ..)))
  (at level 200, x binder, right associativity,
   format "'[' 'exists'  !  '/  ' x  ..  y ,  '/  ' p ']'")
  : type_scope.

Lemma unique_existence : forall (A:Type) (P:A->Prop),
  ((exists x, P x) /\ uniqueness P) <-> (exists! x, P x).
Proof.
  intros A P; split.
  - intros ((x,Hx),Huni); exists x; red; auto.
  - intros (x,(Hx,Huni)); split.
    + exists x; assumption.
    + intros x' x'' Hx' Hx''; transitivity x.
      symmetry; auto.
      auto.
Qed.

Lemma forall_exists_unique_domain_coincide :
  forall A (P:A->Prop), (exists! x, P x) ->
  forall Q:A->Prop, (forall x, P x -> Q x) <-> (exists x, P x /\ Q x).
Proof.
  intros A P (x & Hp & Huniq); split.
  - intro; exists x; auto.
  - intros (x0 & HPx0 & HQx0) x1 HPx1.
    replace x1 with x0 by (transitivity x; [symmetry|]; auto).
    assumption.
Qed.   

Lemma forall_exists_coincide_unique_domain :
  forall A (P:A->Prop),
  (forall Q:A->Prop, (forall x, P x -> Q x) <-> (exists x, P x /\ Q x))
  -> (exists! x, P x).
Proof.
  intros A P H.
  destruct H with (Q:=P) as ((x & Hx & _),_); [trivial|].
  exists x. split; [trivial|].
  destruct H with (Q:=fun x'=>x=x') as (_,Huniq).
  apply Huniq. exists x; auto.
Qed.       

(** * Being inhabited *)

(** The predicate [inhabited] can be used in different contexts. If [A] is
    thought as a type, [inhabited A] states that [A] is inhabited. If [A] is
    thought as a computationally relevant proposition, then
    [inhabited A] weakens [A] so as to hide its computational meaning.
    The so-weakened proof remains computationally relevant but only in
    a propositional context.
*)

Inductive inhabited (A:Type) : Prop := inhabits : A -> inhabited A.

Hint Resolve inhabits: core.

Lemma exists_inhabited : forall (A:Type) (P:A->Prop),
  (exists x, P x) -> inhabited A.
Proof.
  destruct 1; auto.
Qed.

(** Declaration of stepl and stepr for eq and iff *)

Lemma eq_stepl : forall (A : Type) (x y z : A), x = y -> x = z -> z = y.
Proof.
  intros A x y z H1 H2. rewrite <- H2; exact H1.
Qed.

Declare Left Step eq_stepl.
Declare Right Step eq_trans.

Lemma iff_stepl : forall A B C : Prop, (A <-> B) -> (A <-> C) -> (C <-> B).
Proof.
  intros ? ? ? [? ?] [? ?]; split; intros; auto.
Qed.

Declare Left Step iff_stepl.
Declare Right Step iff_trans.