summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetWeakList.v
blob: 97080b7a1f70d4ee0836e3ab22b1ee932049c8a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id: FSetWeakList.v 8834 2006-05-20 00:41:35Z letouzey $ *)

(** * Finite sets library *)

(** This file proposes an implementation of the non-dependant 
    interface [FSetWeakInterface.S] using lists without redundancy. *)

Require Import FSetWeakInterface.
Set Implicit Arguments.
Unset Strict Implicit.

(** * Functions over lists

   First, we provide sets as lists which are (morally) without redundancy.
   The specs are proved under the additional condition of no redundancy. 
   And the functions returning sets are proved to preserve this invariant. *)

Module Raw (X: DecidableType).
 
  Module E := X.

  Definition elt := X.t.
  Definition t := list elt.

  Definition empty : t := nil.

  Definition is_empty (l : t) : bool := if l then true else false.

  (** ** The set operations. *)

  Fixpoint mem (x : elt) (s : t) {struct s} : bool :=
    match s with
    | nil => false
    | y :: l =>
           if X.eq_dec x y then true else mem x l
    end.

  Fixpoint add (x : elt) (s : t) {struct s} : t :=
    match s with
    | nil => x :: nil
    | y :: l =>
        if X.eq_dec x y then s else y :: add x l
    end.

  Definition singleton (x : elt) : t := x :: nil. 

  Fixpoint remove (x : elt) (s : t) {struct s} : t :=
    match s with
    | nil => nil
    | y :: l =>
        if X.eq_dec x y then l else y :: remove x l
    end.

  Fixpoint fold (B : Set) (f : elt -> B -> B) (s : t) {struct s} : 
   B -> B := fun i => match s with
                      | nil => i
                      | x :: l => fold f l (f x i)
                      end.  

  Definition union (s : t) : t -> t := fold add s.
  
  Definition diff (s s' : t) : t := fold remove s' s.

  Definition inter (s s': t) : t := 
    fold (fun x s => if mem x s' then add x s else s) s nil.

  Definition subset (s s' : t) : bool := is_empty (diff s s').

  Definition equal (s s' : t) : bool := andb (subset s s') (subset s' s). 

  Fixpoint filter (f : elt -> bool) (s : t) {struct s} : t :=
    match s with
    | nil => nil
    | x :: l => if f x then x :: filter f l else filter f l
    end.  

  Fixpoint for_all (f : elt -> bool) (s : t) {struct s} : bool :=
    match s with
    | nil => true
    | x :: l => if f x then for_all f l else false
    end.  
 
  Fixpoint exists_ (f : elt -> bool) (s : t) {struct s} : bool :=
    match s with
    | nil => false
    | x :: l => if f x then true else exists_ f l
    end.

  Fixpoint partition (f : elt -> bool) (s : t) {struct s} : 
   t * t :=
    match s with
    | nil => (nil, nil)
    | x :: l =>
        let (s1, s2) := partition f l in
        if f x then (x :: s1, s2) else (s1, x :: s2)
    end.

  Definition cardinal (s : t) : nat := length s.

  Definition elements (s : t) : list elt := s.

  Definition choose (s : t) : option elt := 
     match s with 
      | nil => None
      | x::_ => Some x
     end.

  (** ** Proofs of set operation specifications. *)
  Section ForNotations. 
  Notation NoDup := (NoDupA X.eq).
  Notation In := (InA X.eq).

  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.

  Lemma In_eq :
    forall (s : t) (x y : elt), X.eq x y -> In x s -> In y s.
  Proof.
  intros s x y; do 2 setoid_rewrite InA_alt; firstorder eauto.
  Qed.
  Hint Immediate In_eq.

  Lemma mem_1 :
   forall (s : t)(x : elt), In x s -> mem x s = true. 
  Proof.
  induction s; intros.
  inversion H.
  simpl; destruct (X.eq_dec x a); trivial.
  inversion_clear H; auto.
  Qed.

  Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
  Proof.
  induction s. 
  intros; inversion H.
  intros x; simpl.
  destruct (X.eq_dec x a); firstorder; discriminate.
  Qed.

  Lemma add_1 :
   forall (s : t) (Hs : NoDup s) (x y : elt), X.eq x y -> In y (add x s).
  Proof.
  induction s. 
  simpl; intuition.
  simpl; intros; case (X.eq_dec x a); intuition; inversion_clear Hs;
   firstorder.
  eauto.
  Qed.

  Lemma add_2 :
   forall (s : t) (Hs : NoDup s) (x y : elt), In y s -> In y (add x s).
  Proof.
  induction s. 
  simpl; intuition.
  simpl; intros; case (X.eq_dec x a); intuition.
  inversion_clear Hs; eauto; inversion_clear H; intuition.
  Qed.

  Lemma add_3 :
   forall (s : t) (Hs : NoDup s) (x y : elt),
   ~ X.eq x y -> In y (add x s) -> In y s.
  Proof.
  induction s. 
  simpl; intuition.
  inversion_clear H0; firstorder; absurd (X.eq x y); auto.
  simpl; intros Hs x y; case (X.eq_dec x a); intros;
   inversion_clear H0; inversion_clear Hs; firstorder; 
   absurd (X.eq x y); auto.
  Qed.

  Lemma add_unique :
   forall (s : t) (Hs : NoDup s)(x:elt), NoDup (add x s).
  Proof.
  induction s.  
  simpl; intuition.
  constructor; auto.
  intro H0; inversion H0.
  intros.
  inversion_clear Hs.
  simpl.
  destruct (X.eq_dec x a).
  constructor; auto.
  constructor; auto.
  intro H1; apply H.
  eapply add_3; eauto.
  Qed.

  Lemma remove_1 :
   forall (s : t) (Hs : NoDup s) (x y : elt), X.eq x y -> ~ In y (remove x s).
  Proof.
  simple induction s. 
  simpl; red; intros; inversion H0.
  simpl; intros; case (X.eq_dec x a); intuition; inversion_clear Hs. 
  elim H2.
  apply In_eq with y; eauto.
  inversion_clear H1; eauto.
  Qed.

  Lemma remove_2 :
   forall (s : t) (Hs : NoDup s) (x y : elt),
   ~ X.eq x y -> In y s -> In y (remove x s).
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros; case (X.eq_dec x a); intuition; inversion_clear Hs;
   inversion_clear H1; auto. 
  absurd (X.eq x y); eauto. 
  Qed.

  Lemma remove_3 :
   forall (s : t) (Hs : NoDup s) (x y : elt), In y (remove x s) -> In y s.
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros a l Hrec Hs x y; case (X.eq_dec x a); intuition.
  inversion_clear Hs; inversion_clear H; firstorder.
  Qed.

  Lemma remove_unique :
   forall (s : t) (Hs : NoDup s) (x : elt), NoDup (remove x s).
  Proof.
  simple induction s.
  simpl; intuition.
  simpl; intros; case (X.eq_dec x a); intuition; inversion_clear Hs;
   auto.
  constructor; auto.
  intro H2; elim H0.
  eapply remove_3; eauto.
  Qed. 

  Lemma singleton_unique : forall x : elt, NoDup (singleton x).
  Proof.
  unfold singleton; simpl; constructor; auto; intro H; inversion H.
  Qed.

  Lemma singleton_1 : forall x y : elt, In y (singleton x) -> X.eq x y.
  Proof.
  unfold singleton; simpl; intuition.
  inversion_clear H; auto; inversion H0.
  Qed. 

  Lemma singleton_2 : forall x y : elt, X.eq x y -> In y (singleton x).
  Proof.
  unfold singleton; simpl; intuition.
  Qed. 
  
  Lemma empty_unique : NoDup empty.
  Proof.
  unfold empty; constructor.
  Qed.

  Lemma empty_1 : Empty empty.
  Proof.
  unfold Empty, empty; intuition; inversion H.
  Qed. 

  Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
  Proof.
  unfold Empty; intro s; case s; simpl; intuition.
  elim (H e); auto.
  Qed.
  
  Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s. 
  Proof.
  unfold Empty; intro s; case s; simpl; intuition;
   inversion H0.
  Qed.

  Lemma elements_1 : forall (s : t) (x : elt), In x s -> In x (elements s).
  Proof.
  unfold elements; auto.
  Qed.

  Lemma elements_2 : forall (s : t) (x : elt), In x (elements s) -> In x s.
  Proof. 
  unfold elements; auto.
  Qed.
 
  Lemma elements_3 : forall (s : t) (Hs : NoDup s), NoDup (elements s).  
  Proof. 
  unfold elements; auto.
  Qed.

  Lemma fold_1 :
   forall (s : t) (Hs : NoDup s) (A : Set) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof.
  induction s; simpl; auto; intros.
  inversion_clear Hs; auto.
  Qed.

  Lemma union_unique :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s'), NoDup (union s s').
  Proof.
  unfold union; induction s; simpl; auto; intros.
  inversion_clear Hs.
  apply IHs; auto.
  apply add_unique; auto.
  Qed.
  
  Lemma union_1 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (union s s') -> In x s \/ In x s'.
  Proof.
  unfold union; induction s; simpl; auto; intros.
  inversion_clear Hs.
  destruct (X.eq_dec x a).
  left; auto.
  destruct (IHs (add a s') H1 (add_unique Hs' a) x); intuition.
  right; eapply add_3; eauto.
  Qed.

  Lemma union_0 : 
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x s \/ In x s' -> In x (union s s').
  Proof.
  unfold union; induction s; simpl; auto; intros.
  inversion_clear H; auto.
  inversion_clear H0.
  inversion_clear Hs.
  apply IHs; auto.
  apply add_unique; auto.
  destruct H.
  inversion_clear H; auto.
  right; apply add_1; auto.
  right; apply add_2; auto.
  Qed.

  Lemma union_2 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x s -> In x (union s s').
  Proof.
  intros; apply union_0; auto.
  Qed.

  Lemma union_3 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x s' -> In x (union s s').
  Proof.
  intros; apply union_0; auto.
  Qed.

  Lemma inter_unique :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s'), NoDup (inter s s').
  Proof.
  unfold inter; intros s.
  set (acc := nil (A:=elt)).
  assert (NoDup acc) by (unfold acc; auto).
  clearbody acc; generalize H; clear H; generalize acc; clear acc. 
  induction s; simpl; auto; intros.
  inversion_clear Hs.
  apply IHs; auto.
  destruct (mem a s'); intros; auto.
  apply add_unique; auto.
  Qed.  
  
  Lemma inter_0  :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (inter s s') -> In x s /\ In x s'.
  Proof.
  unfold inter; intros.
  set (acc := nil (A:=elt)) in *.
  assert (NoDup acc) by (unfold acc; auto).
  cut ((In x s /\ In x s') \/ In x acc).
    destruct 1; auto.
    inversion H1.
  clearbody acc. 
  generalize H0 H Hs' Hs; clear H0 H Hs Hs'.
  generalize acc x s'; clear acc x s'.
  induction s; simpl; auto; intros.
  inversion_clear Hs.
  case_eq (mem a s'); intros H3; rewrite H3 in H; simpl in H.
  destruct (IHs _ _ _ (add_unique H0 a) H); auto.
  left; intuition.
  destruct (X.eq_dec x a); auto.
  left; intuition.
  apply In_eq with a; eauto.
  apply mem_2; auto.
  right; eapply add_3; eauto.
  destruct (IHs _ _ _ H0 H); auto.
  left; intuition.
  Qed.

  Lemma inter_1  :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (inter s s') -> In x s.
  Proof.
  intros; cut (In x s /\ In x s'); [ intuition | apply inter_0; auto ].
  Qed.

  Lemma inter_2 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (inter s s') -> In x s'.
  Proof.
  intros; cut (In x s /\ In x s'); [ intuition | apply inter_0; auto ].
  Qed.

  Lemma inter_3 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x s -> In x s' -> In x (inter s s').
  Proof.
  intros s s' Hs Hs' x.
  cut (((In x s /\ In x s')\/ In x (nil (A:=elt))) -> In x (inter s s')).
  intuition.
  unfold inter.
  set (acc := nil (A:=elt)) in *.
  assert (NoDup acc) by (unfold acc; auto).
  clearbody acc. 
  generalize H Hs' Hs; clear H Hs Hs'.
  generalize acc x s'; clear acc x s'.
  induction s; simpl; auto; intros.
  destruct H0; auto.
  destruct H0; inversion H0.
  inversion_clear Hs.
  case_eq (mem a s'); intros H3; apply IHs; auto.
  apply add_unique; auto.
  destruct H0.
  destruct H0.
  inversion_clear H0.
  right; apply add_1; auto.
  left; auto.
  right; apply add_2; auto.
  destruct H0; auto.
  destruct H0.
  inversion_clear H0; auto.
  absurd (In x s'); auto.
  red; intros.
  rewrite (mem_1 (In_eq H5 H0)) in H3.
  discriminate.
  Qed.

  Lemma diff_unique :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s'), NoDup (diff s s').
  Proof.
  unfold diff; intros s s' Hs; generalize s Hs; clear Hs s.
  induction s'; simpl; auto; intros.
  inversion_clear Hs'.
  apply IHs'; auto.
  apply remove_unique; auto.
  Qed.  
  
  Lemma diff_0 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (diff s s') -> In x s /\ ~ In x s'.
  Proof.
  unfold diff; intros s s' Hs; generalize s Hs; clear Hs s.
  induction s'; simpl; auto; intros.
  inversion_clear Hs'.
  split; auto; intro H1; inversion H1.
  inversion_clear Hs'.
  destruct (IHs' (remove a s) (remove_unique Hs a) H1 x H).
  split. 
  eapply remove_3; eauto.
  red; intros.
  inversion_clear H4; auto.
  destruct (remove_1 Hs (X.eq_sym H5) H2).
  Qed.

  Lemma diff_1 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (diff s s') -> In x s.
  Proof.
  intros; cut (In x s /\ ~ In x s'); [ intuition | apply diff_0; auto]. 
  Qed.

  Lemma diff_2 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x (diff s s') -> ~ In x s'.
  Proof.
  intros; cut (In x s /\ ~ In x s'); [ intuition | apply diff_0; auto]. 
  Qed.

  Lemma diff_3 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s') (x : elt),
   In x s -> ~ In x s' -> In x (diff s s').
  Proof.
  unfold diff; intros s s' Hs; generalize s Hs; clear Hs s.
  induction s'; simpl; auto; intros.
  inversion_clear Hs'.
  apply IHs'; auto.
  apply remove_unique; auto.
  apply remove_2; auto.
  Qed.  
  
  Lemma subset_1 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s'),
   Subset s s' -> subset s s' = true.
  Proof.
  unfold subset, Subset; intros.
  apply is_empty_1.
  unfold Empty; intros.
  intro.
  destruct (diff_2 Hs Hs' H0).
  apply H.
  eapply diff_1; eauto.
  Qed.

  Lemma subset_2 : forall (s s' : t)(Hs : NoDup s) (Hs' : NoDup s'), 
     subset s s' = true -> Subset s s'.
  Proof.
  unfold subset, Subset; intros.
  generalize (is_empty_2 H); clear H; unfold Empty; intros.
  generalize (@mem_1 s' a) (@mem_2 s' a); destruct (mem a s').
  intuition.
  intros.
  destruct (H a).
  apply diff_3; intuition.
  Qed.

  Lemma equal_1 :
   forall (s s' : t) (Hs : NoDup s) (Hs' : NoDup s'),
   Equal s s' -> equal s s' = true.
  Proof.
  unfold Equal, equal; intros.
  apply andb_true_intro; split; apply subset_1; firstorder.
  Qed.

  Lemma equal_2 : forall (s s' : t)(Hs : NoDup s) (Hs' : NoDup s'),  
     equal s s' = true -> Equal s s'.
  Proof.
  unfold Equal, equal; intros.
  destruct (andb_prop _ _ H); clear H.
  split; apply subset_2; auto.
  Qed.  

  Definition choose_1 :
    forall (s : t) (x : elt), choose s = Some x -> In x s.
  Proof.
  destruct s; simpl; intros; inversion H; auto.
  Qed.  

  Definition choose_2 : forall s : t, choose s = None -> Empty s.
  Proof.
  destruct s; simpl; intros.
  intros x H0; inversion H0.
  inversion H.
  Qed.  

  Lemma cardinal_1 :
   forall (s : t) (Hs : NoDup s), cardinal s = length (elements s).
  Proof.
  auto.
  Qed.

  Lemma filter_1 :
   forall (s : t) (x : elt) (f : elt -> bool),
   In x (filter f s) -> In x s.
  Proof.
  simple induction s; simpl.
  intros; inversion H.
  intros x l Hrec a f.
  case (f x); simpl.
  inversion_clear 1.
  constructor; auto.
  constructor 2; apply (Hrec a f); trivial.
  constructor 2; apply (Hrec a f); trivial.
  Qed.

   Lemma filter_2 :
    forall (s : t) (x : elt) (f : elt -> bool),
    compat_bool X.eq f -> In x (filter f s) -> f x = true.   
   Proof.
  simple induction s; simpl.
  intros; inversion H0.
  intros x l Hrec a f Hf.
  generalize (Hf x); case (f x); simpl; auto.
  inversion_clear 2; auto.
  symmetry; auto.
  Qed.
 
  Lemma filter_3 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool X.eq f -> In x s -> f x = true -> In x (filter f s).     
  Proof.
  simple induction s; simpl.
  intros; inversion H0.
  intros x l Hrec a f Hf.
  generalize (Hf x); case (f x); simpl.
  inversion_clear 2; auto.
  inversion_clear 2; auto.
  rewrite <- (H a (X.eq_sym H1)); intros; discriminate.
  Qed.

  Lemma filter_unique :
   forall (s : t) (Hs : NoDup s) (f : elt -> bool), NoDup (filter f s).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  case (f x); auto.
  constructor; auto.
  intro H1; apply H.
  eapply filter_1; eauto.
  Qed.


  Lemma for_all_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   For_all (fun x => f x = true) s -> for_all f s = true.
  Proof. 
  simple induction s; simpl; auto; unfold For_all.
  intros x l Hrec f Hf. 
  generalize (Hf x); case (f x); simpl.
  auto.
  intros; rewrite (H x); auto.
  Qed.

  Lemma for_all_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   for_all f s = true -> For_all (fun x => f x = true) s.
  Proof. 
  simple induction s; simpl; auto; unfold For_all.
  intros; inversion H1.
  intros x l Hrec f Hf. 
  intros A a; intros. 
  assert (f x = true).
   generalize A; case (f x); auto.
  rewrite H0 in A; simpl in A.
  inversion_clear H; auto.
  rewrite (Hf a x); auto.
  Qed.

  Lemma exists_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
  Proof.
  simple induction s; simpl; auto; unfold Exists.
  intros.
  elim H0; intuition. 
  inversion H2.
  intros x l Hrec f Hf. 
  generalize (Hf x); case (f x); simpl.
  auto.
  destruct 2 as [a (A1,A2)].
  inversion_clear A1.
  rewrite <- (H a (X.eq_sym H0)) in A2; discriminate.
  apply Hrec; auto.
  exists a; auto.
  Qed.

  Lemma exists_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
  Proof. 
  simple induction s; simpl; auto; unfold Exists.
  intros; discriminate.
  intros x l Hrec f Hf.
  case_eq (f x); intros.
  exists x; auto.
  destruct (Hrec f Hf H0) as [a (A1,A2)].
  exists a; auto.
  Qed.

  Lemma partition_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> Equal (fst (partition f s)) (filter f s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  firstorder.
  intros x l Hrec f Hf.
  generalize (Hrec f Hf); clear Hrec.
  case (partition f l); intros s1 s2; simpl; intros.
  case (f x); simpl; firstorder; inversion H0; intros; firstorder. 
  Qed.
   
  Lemma partition_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  firstorder.
  intros x l Hrec f Hf. 
  generalize (Hrec f Hf); clear Hrec.
  case (partition f l); intros s1 s2; simpl; intros.
  case (f x); simpl; firstorder; inversion H0; intros; firstorder. 
  Qed.

  Lemma partition_aux_1 : 
   forall (s : t) (Hs : NoDup s) (f : elt -> bool)(x:elt), 
    In x (fst (partition f s)) -> In x s.
  Proof.
  induction s; simpl; auto; intros.
  inversion_clear Hs.
  generalize (IHs H1 f x).
  destruct (f a); destruct (partition f s); simpl in *; auto.
  inversion_clear H; auto.
  Qed. 
     
  Lemma partition_aux_2 : 
   forall (s : t) (Hs : NoDup s) (f : elt -> bool)(x:elt), 
    In x (snd (partition f s)) -> In x s.
  Proof.
  induction s; simpl; auto; intros.
  inversion_clear Hs.
  generalize (IHs H1 f x).
  destruct (f a); destruct (partition f s); simpl in *; auto.
  inversion_clear H; auto.
  Qed. 
  
  Lemma partition_unique_1 :
   forall (s : t) (Hs : NoDup s) (f : elt -> bool), NoDup (fst (partition f s)).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  generalize (@partition_aux_1 _ H0 f x).
  generalize (Hrec H0 f).
  case (f x); case (partition f l); simpl; auto.
  Qed.
  
  Lemma partition_unique_2 :
   forall (s : t) (Hs : NoDup s) (f : elt -> bool), NoDup (snd (partition f s)).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  generalize (@partition_aux_2 _ H0 f x).
  generalize (Hrec H0 f).
  case (f x); case (partition f l); simpl; auto.
  Qed.
 
  Definition eq : t -> t -> Prop := Equal.

  Lemma eq_refl : forall s : t, eq s s. 
  Proof. 
  unfold eq, Equal; intuition.
  Qed.

  Lemma eq_sym : forall s s' : t, eq s s' -> eq s' s.
  Proof. 
  unfold eq, Equal; firstorder.
  Qed.

  Lemma eq_trans : forall s s' s'' : t, eq s s' -> eq s' s'' -> eq s s''.
  Proof. 
  unfold eq, Equal; firstorder.
  Qed.

  End ForNotations.
End Raw.

(** * Encapsulation

   Now, in order to really provide a functor implementing [S], we 
   need to encapsulate everything into a type of lists without redundancy. *)

Module Make (X: DecidableType) <: S with Module E := X.

 Module Raw := Raw X. 
 Module E := X.

 Record slist : Set :=  {this :> Raw.t; unique : NoDupA E.eq this}.
 Definition t := slist. 
 Definition elt := E.t.
 
 Definition In (x : elt) (s : t) : Prop := InA E.eq x s.(this).
 Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'.
 Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'.
 Definition Empty (s:t) : Prop := forall a : elt, ~ In a s.
 Definition For_all (P : elt -> Prop) (s : t) : Prop :=
   forall x : elt, In x s -> P x.
 Definition Exists (P : elt -> Prop) (s : t) : Prop := exists x : elt, In x s /\ P x.

 Definition mem (x : elt) (s : t) : bool := Raw.mem x s.
 Definition add (x : elt)(s : t) : t  := Build_slist (Raw.add_unique (unique s) x).
 Definition remove (x : elt)(s : t) : t := Build_slist (Raw.remove_unique (unique s) x).
 Definition singleton (x : elt) : t := Build_slist (Raw.singleton_unique x).
 Definition union (s s' : t) : t :=
   Build_slist (Raw.union_unique (unique s) (unique s')). 
 Definition inter (s s' : t) : t :=
   Build_slist (Raw.inter_unique (unique s) (unique s')). 
 Definition diff (s s' : t) : t :=
   Build_slist (Raw.diff_unique (unique s) (unique s')). 
 Definition equal (s s' : t) : bool := Raw.equal s s'. 
 Definition subset (s s' : t) : bool := Raw.subset s s'.
 Definition empty : t := Build_slist Raw.empty_unique.
 Definition is_empty (s : t) : bool := Raw.is_empty s.
 Definition elements (s : t) : list elt := Raw.elements s.
 Definition choose (s:t) : option elt := Raw.choose s.
 Definition fold (B : Set) (f : elt -> B -> B) (s : t) : B -> B := Raw.fold (B:=B) f s. 
 Definition cardinal (s : t) : nat := Raw.cardinal s.
 Definition filter (f : elt -> bool) (s : t) : t :=
   Build_slist (Raw.filter_unique (unique s) f).
 Definition for_all (f : elt -> bool) (s : t) : bool := Raw.for_all f s.
 Definition exists_ (f : elt -> bool) (s : t) : bool := Raw.exists_ f s.
 Definition partition (f : elt -> bool) (s : t) : t * t :=
   let p := Raw.partition f s in
   (Build_slist (this:=fst p) (Raw.partition_unique_1 (unique s) f),
   Build_slist (this:=snd p) (Raw.partition_unique_2 (unique s) f)).

 Section Spec. 
  Variable s s' : t.
  Variable x y : elt.

  Lemma In_1 : E.eq x y -> In x s -> In y s. 
  Proof. exact (fun H H' => Raw.In_eq H H'). Qed.
 
  Lemma mem_1 : In x s -> mem x s = true.
  Proof. exact (fun H => Raw.mem_1 H). Qed.
  Lemma mem_2 : mem x s = true -> In x s. 
  Proof. exact (fun H => Raw.mem_2 H). Qed.
 
  Lemma equal_1 : Equal s s' -> equal s s' = true.
  Proof. exact (Raw.equal_1 s.(unique) s'.(unique)). Qed.
  Lemma equal_2 : equal s s' = true -> Equal s s'.
  Proof. exact (Raw.equal_2 s.(unique) s'.(unique)). Qed.

  Lemma subset_1 : Subset s s' -> subset s s' = true.
  Proof. exact (Raw.subset_1 s.(unique) s'.(unique)). Qed.
  Lemma subset_2 : subset s s' = true -> Subset s s'.
  Proof. exact (Raw.subset_2 s.(unique) s'.(unique)). Qed.

  Lemma empty_1 : Empty empty.
  Proof. exact Raw.empty_1. Qed.

  Lemma is_empty_1 : Empty s -> is_empty s = true. 
  Proof. exact (fun H => Raw.is_empty_1 H). Qed.
  Lemma is_empty_2 : is_empty s = true -> Empty s.
  Proof. exact (fun H => Raw.is_empty_2 H). Qed.
 
  Lemma add_1 : E.eq x y -> In y (add x s).
  Proof. exact (fun H => Raw.add_1 s.(unique) H). Qed.
  Lemma add_2 : In y s -> In y (add x s).
  Proof. exact (fun H => Raw.add_2 s.(unique) x H). Qed.
  Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s. 
  Proof. exact (fun H => Raw.add_3 s.(unique) H). Qed.

  Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
  Proof. exact (fun H => Raw.remove_1 s.(unique) H). Qed.
  Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
  Proof. exact (fun H H' => Raw.remove_2 s.(unique) H H'). Qed.
  Lemma remove_3 : In y (remove x s) -> In y s.
  Proof. exact (fun H => Raw.remove_3 s.(unique) H). Qed.

  Lemma singleton_1 : In y (singleton x) -> E.eq x y. 
  Proof. exact (fun H => Raw.singleton_1 H). Qed.
  Lemma singleton_2 : E.eq x y -> In y (singleton x). 
  Proof. exact (fun H => Raw.singleton_2 H). Qed.

  Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
  Proof. exact (fun H => Raw.union_1 s.(unique) s'.(unique) H). Qed.
  Lemma union_2 : In x s -> In x (union s s'). 
  Proof. exact (fun H => Raw.union_2 s.(unique) s'.(unique) H). Qed.
  Lemma union_3 : In x s' -> In x (union s s').
  Proof. exact (fun H => Raw.union_3 s.(unique) s'.(unique) H). Qed.

  Lemma inter_1 : In x (inter s s') -> In x s.
  Proof. exact (fun H => Raw.inter_1 s.(unique) s'.(unique) H). Qed.
  Lemma inter_2 : In x (inter s s') -> In x s'.
  Proof. exact (fun H => Raw.inter_2 s.(unique) s'.(unique) H). Qed.
  Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
  Proof. exact (fun H => Raw.inter_3 s.(unique) s'.(unique) H). Qed.

  Lemma diff_1 : In x (diff s s') -> In x s. 
  Proof. exact (fun H => Raw.diff_1 s.(unique) s'.(unique) H). Qed.
  Lemma diff_2 : In x (diff s s') -> ~ In x s'.
  Proof. exact (fun H => Raw.diff_2 s.(unique) s'.(unique) H). Qed.
  Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
  Proof. exact (fun H => Raw.diff_3 s.(unique) s'.(unique) H). Qed.
 
  Lemma fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
      fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof. exact (Raw.fold_1 s.(unique)). Qed.

  Lemma cardinal_1 : cardinal s = length (elements s).
  Proof. exact (Raw.cardinal_1 s.(unique)). Qed.

  Section Filter.
  
  Variable f : elt -> bool.

  Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s. 
  Proof. exact (fun H => @Raw.filter_1 s x f). Qed.
  Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true. 
  Proof. exact (@Raw.filter_2 s x f). Qed.
  Lemma filter_3 :
      compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
  Proof. exact (@Raw.filter_3 s x f). Qed.

  Lemma for_all_1 :
      compat_bool E.eq f ->
      For_all (fun x => f x = true) s -> for_all f s = true.
  Proof. exact (@Raw.for_all_1 s f). Qed.
  Lemma for_all_2 :
      compat_bool E.eq f ->
      for_all f s = true -> For_all (fun x => f x = true) s.
  Proof. exact (@Raw.for_all_2 s f). Qed.

  Lemma exists_1 :
      compat_bool E.eq f ->
      Exists (fun x => f x = true) s -> exists_ f s = true.
  Proof. exact (@Raw.exists_1 s f). Qed.
  Lemma exists_2 :
      compat_bool E.eq f ->
      exists_ f s = true -> Exists (fun x => f x = true) s.
  Proof. exact (@Raw.exists_2 s f). Qed.

  Lemma partition_1 :
      compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
  Proof. exact (@Raw.partition_1 s f). Qed.
  Lemma partition_2 :
      compat_bool E.eq f ->
      Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof. exact (@Raw.partition_2 s f). Qed.

  End Filter.

  Lemma elements_1 : In x s -> InA E.eq x (elements s).
  Proof. exact (fun H => Raw.elements_1 H). Qed.
  Lemma elements_2 : InA E.eq x (elements s) -> In x s.
  Proof. exact (fun H => Raw.elements_2 H). Qed.
  Lemma elements_3 : NoDupA E.eq (elements s).
  Proof. exact (Raw.elements_3 s.(unique)). Qed.

  Lemma choose_1 : choose s = Some x -> In x s.
  Proof. exact (fun H => Raw.choose_1 H). Qed.
  Lemma choose_2 : choose s = None -> Empty s.
  Proof. exact (fun H => Raw.choose_2 H). Qed.

 End Spec.

End Make.