summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetProperties.v
blob: 6e93a54660046316bfd8c1e1c3c5d3e9058cd9ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id: FSetProperties.v 8853 2006-05-23 18:17:38Z herbelin $ *)

(** * Finite sets library *)

(** This functor derives additional properties from [FSetInterface.S].
    Contrary to the functor in [FSetEqProperties] it uses 
    predicates over sets instead of sets operations, i.e.
    [In x s] instead of [mem x s=true], 
    [Equal s s'] instead of [equal s s'=true], etc. *)

Require Export FSetInterface. 
Require Import FSetFacts.
Set Implicit Arguments.
Unset Strict Implicit.

Hint Unfold transpose compat_op compat_nat.
Hint Extern 1 (Setoid_Theory _ _) => constructor; congruence.

Module Properties (M: S).
  Module ME:=OrderedTypeFacts(M.E).
  Import ME. (* for ME.eq_dec *)
  Import M.E.
  Import M.
  Import Logic. (* to unmask [eq] *)  
  Import Peano. (* to unmask [lt] *)
  
   (** Results about lists without duplicates *)

  Module FM := Facts M.
  Import FM.

  Definition Add (x : elt) (s s' : t) :=
    forall y : elt, In y s' <-> E.eq x y \/ In y s.

  Lemma In_dec : forall x s, {In x s} + {~ In x s}.
  Proof.
  intros; generalize (mem_iff s x); case (mem x s); intuition.
  Qed.

  Section BasicProperties.

  (** properties of [Equal] *)

  Lemma equal_refl : forall s, s[=]s.
  Proof.
  unfold Equal; intuition.
  Qed.

  Lemma equal_sym : forall s s', s[=]s' -> s'[=]s.
  Proof.
  unfold Equal; intros.
  rewrite H; intuition.
  Qed.

  Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3.
  Proof.
  unfold Equal; intros.
  rewrite H; exact (H0 a).
  Qed.

  Variable s s' s'' s1 s2 s3 : t.
  Variable x x' : elt.

  (** properties of [Subset] *)
  
  Lemma subset_refl : s[<=]s. 
  Proof.
  unfold Subset; intuition.
  Qed.

  Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
  Proof.
  unfold Subset, Equal; intuition.
  Qed.

  Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
  Proof.
  unfold Subset; intuition.
  Qed.

  Lemma subset_equal : s[=]s' -> s[<=]s'.
  Proof.
  unfold Subset, Equal; firstorder.
  Qed.

  Lemma subset_empty : empty[<=]s.
  Proof.
  unfold Subset; intros a; set_iff; intuition.
  Qed.

  Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
  Proof.
  unfold Subset; intros H a; set_iff; intuition.
  Qed.

  Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
  Proof.
  unfold Subset; intros H a; set_iff; intuition.
  Qed.

  Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
  Proof.
  unfold Subset; intros H H0 a; set_iff; intuition.
  rewrite <- H2; auto.
  Qed.

  Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
  Proof.
  unfold Subset; intuition.
  Qed.

  Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
  Proof.
  unfold Subset; intuition.
  Qed.
 
  Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
  Proof.
  unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition.
  Qed.

  (** properties of [empty] *)

  Lemma empty_is_empty_1 : Empty s -> s[=]empty.
  Proof.
  unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
  Qed.

  Lemma empty_is_empty_2 : s[=]empty -> Empty s.
  Proof.
  unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
  Qed.

  (** properties of [add] *)

  Lemma add_equal : In x s -> add x s [=] s.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  rewrite <- H1; auto.
  Qed.
 
  Lemma add_add : add x (add x' s) [=] add x' (add x s).
  Proof. 
  unfold Equal; intros; set_iff; tauto.
  Qed.

  (** properties of [remove] *)

  Lemma remove_equal : ~ In x s -> remove x s [=] s.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  rewrite H1 in H; auto.
  Qed.

  Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
  Proof.
  intros; rewrite H; apply equal_refl.
  Qed.

  (** properties of [add] and [remove] *)

  Lemma add_remove : In x s -> add x (remove x s) [=] s.
  Proof.
  unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
  rewrite <- H1; auto.
  Qed.

  Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
  Proof.
  unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
  rewrite H1 in H; auto.
  Qed.

  (** properties of [singleton] *)

  Lemma singleton_equal_add : singleton x [=] add x empty.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  Qed.

  (** properties of [union] *)

  Lemma union_sym : union s s' [=] union s' s.
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
  Proof.
  unfold Subset, Equal; intros; set_iff; intuition.
  Qed.

  Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
  Proof.
  intros; rewrite H; apply equal_refl.
  Qed.

  Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
  Proof.
  intros; rewrite H; apply equal_refl.
  Qed.

  Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma add_union_singleton : add x s [=] union (singleton x) s.
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma union_add : union (add x s) s' [=] add x (union s s').
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma union_subset_1 : s [<=] union s s'.
  Proof.
  unfold Subset; intuition.
  Qed.

  Lemma union_subset_2 : s' [<=] union s s'.
  Proof.
  unfold Subset; intuition.
  Qed.

  Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
  Proof.
  unfold Subset; intros H H0 a; set_iff; intuition.
  Qed.

  Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
  Proof. 
  unfold Subset; intros H a; set_iff; intuition.
  Qed.

  Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
  Proof. 
  unfold Subset; intros H a; set_iff; intuition.
  Qed.

  Lemma empty_union_1 : Empty s -> union s s' [=] s'.
  Proof.
  unfold Equal, Empty; intros; set_iff; firstorder.
  Qed.

  Lemma empty_union_2 : Empty s -> union s' s [=] s'.
  Proof.
  unfold Equal, Empty; intros; set_iff; firstorder.
  Qed.

  Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s'). 
  Proof.
  intros; set_iff; intuition. 
  Qed.  

  (** properties of [inter] *)

  Lemma inter_sym : inter s s' [=] inter s' s.
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  Qed.

  Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
  Proof.
  intros; rewrite H; apply equal_refl.
  Qed.

  Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
  Proof.
  intros; rewrite H; apply equal_refl.
  Qed.

  Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
  Proof.
  unfold Equal; intros; set_iff; tauto.
  Qed.

  Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
  Proof.
  unfold Equal; intros; set_iff; intuition.
  rewrite <- H1; auto.
  Qed.

  Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  destruct H; rewrite H0; auto.
  Qed.

  Lemma empty_inter_1 : Empty s -> Empty (inter s s').
  Proof.
  unfold Empty; intros; set_iff; firstorder.
  Qed.

  Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
  Proof.
  unfold Empty; intros; set_iff; firstorder.
  Qed.

  Lemma inter_subset_1 : inter s s' [<=] s.
  Proof.
  unfold Subset; intro a; set_iff; tauto.
  Qed.

  Lemma inter_subset_2 : inter s s' [<=] s'.
  Proof.
  unfold Subset; intro a; set_iff; tauto.
  Qed.

  Lemma inter_subset_3 :
   s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
  Proof.
  unfold Subset; intros H H' a; set_iff; intuition.
  Qed.

  (** properties of [diff] *)

  Lemma empty_diff_1 : Empty s -> Empty (diff s s'). 
  Proof.
  unfold Empty, Equal; intros; set_iff; firstorder.
  Qed.

  Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
  Proof.
  unfold Empty, Equal; intros; set_iff; firstorder.
  Qed.

  Lemma diff_subset : diff s s' [<=] s.
  Proof.
  unfold Subset; intros a; set_iff; tauto.
  Qed.

  Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
  Proof.
  unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto.
  Qed.

  Lemma remove_diff_singleton :
   remove x s [=] diff s (singleton x).
  Proof.
  unfold Equal; intros; set_iff; intuition.
  Qed.

  Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty. 
  Proof.
  unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto.
  Qed.

  Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
  Proof.
  unfold Equal; intros; set_iff; intuition.
  elim (In_dec a s'); auto.
  Qed.

  (** properties of [Add] *)

  Lemma Add_add : Add x s (add x s).
  Proof.
   unfold Add; intros; set_iff; intuition.
  Qed.

  Lemma Add_remove : In x s -> Add x (remove x s) s. 
  Proof. 
    unfold Add; intros; set_iff; intuition.
    elim (eq_dec x y); auto.
    rewrite <- H1; auto.
  Qed.

  Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
  Proof. 
  unfold Add; intros; set_iff; rewrite H; tauto.
  Qed.

  Lemma inter_Add :
   In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
  Proof. 
  unfold Add; intros; set_iff; rewrite H0; intuition.
  rewrite <- H2; auto.
  Qed.  

  Lemma union_Equal :
   In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
  Proof. 
  unfold Add, Equal; intros; set_iff; rewrite H0; intuition. 
  rewrite <- H1; auto.
  Qed.  

  Lemma inter_Add_2 :
   ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
  Proof.
  unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
  destruct H; rewrite H1; auto.
  Qed.

  End BasicProperties.

  Hint Immediate equal_sym: set.
  Hint Resolve equal_refl equal_trans : set.

  Hint Immediate add_remove remove_add union_sym inter_sym: set.
  Hint Resolve subset_refl subset_equal subset_antisym 
    subset_trans subset_empty subset_remove_3 subset_diff subset_add_3 
    subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
    remove_equal singleton_equal_add union_subset_equal union_equal_1 
    union_equal_2 union_assoc add_union_singleton union_add union_subset_1 
    union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
    inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
    empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1 
    empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union 
    inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal 
    remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
    Equal_remove add_add : set.

  (** * Alternative (weaker) specifications for [fold] *)

  Section Old_Spec_Now_Properties. 

  Notation NoDup := (NoDupA E.eq).

  (** When [FSets] was first designed, the order in which Ocaml's [Set.fold]
        takes the set elements was unspecified. This specification reflects this fact: 
  *)

  Lemma fold_0 : 
      forall s (A : Set) (i : A) (f : elt -> A -> A),
      exists l : list elt,
        NoDup l /\
        (forall x : elt, In x s <-> InA E.eq x l) /\
        fold f s i = fold_right f i l.
  Proof.
  intros; exists (rev (elements s)); split.
  apply NoDupA_rev; auto.
  exact E.eq_trans.
  split; intros.
  rewrite elements_iff; do 2 rewrite InA_alt.
  split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
  rewrite fold_left_rev_right.
  apply fold_1.
  Qed.

  (** An alternate (and previous) specification for [fold] was based on 
      the recursive structure of a set. It is now lemmas [fold_1] and 
      [fold_2]. *)

  Lemma fold_1 :
   forall s (A : Set) (eqA : A -> A -> Prop) 
     (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
   Empty s -> eqA (fold f s i) i.
  Proof.
  unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
  rewrite H3; clear H3.
  generalize H H2; clear H H2; case l; simpl; intros.
  refl_st.
  elim (H e).
  elim (H2 e); intuition. 
  Qed.

  Lemma fold_2 :
   forall s s' x (A : Set) (eqA : A -> A -> Prop)
     (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
   compat_op E.eq eqA f ->
   transpose eqA f ->
   ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
  Proof.
  intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2))); 
    destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
  rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
  apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
  eauto.
  exact eq_dec.
  rewrite <- Hl1; auto.
  intros; rewrite <- Hl1; rewrite <- Hl'1; auto.
  Qed.

  (** Similar specifications for [cardinal]. *)

  Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
  Proof.
  intros; rewrite cardinal_1; rewrite M.fold_1.
  symmetry; apply fold_left_length; auto.
  Qed.

  Lemma cardinal_0 :
     forall s, exists l : list elt,
        NoDupA E.eq l /\
        (forall x : elt, In x s <-> InA E.eq x l) /\ 
        cardinal s = length l.
  Proof. 
  intros; exists (elements s); intuition; apply cardinal_1.
  Qed.

  Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
  Proof.
  intros; rewrite cardinal_fold; apply fold_1; auto.
  Qed.

  Lemma cardinal_2 :
    forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
  Proof.
  intros; do 2 rewrite cardinal_fold.
  change S with ((fun _ => S) x).
  apply fold_2; auto.
  Qed.

  End Old_Spec_Now_Properties.

  (** * Induction principle over sets *)

  Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s. 
  Proof. 
    intros s; rewrite M.cardinal_1; intros H a; red.
    rewrite elements_iff.
    destruct (elements s); simpl in *; discriminate || inversion 1.
  Qed.
  Hint Resolve cardinal_inv_1.
 
  Lemma cardinal_inv_2 :
   forall s n, cardinal s = S n -> { x : elt | In x s }.
  Proof. 
    intros; rewrite M.cardinal_1 in H.
    generalize (elements_2 (s:=s)).
    destruct (elements s); try discriminate. 
    exists e; auto.
  Qed.

  Lemma Equal_cardinal_aux :
   forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'.
  Proof.
     simple induction n; intros.
     rewrite H; symmetry .
     apply cardinal_1.
     rewrite <- H0; auto.
     destruct (cardinal_inv_2 H0) as (x,H2).
     revert H0.
     rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
     rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set.
     rewrite H1 in H2; auto with set.
  Qed.

  Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
  Proof. 
    intros; apply Equal_cardinal_aux with (cardinal s); auto.
  Qed.

  Add Morphism cardinal : cardinal_m.
  Proof.
  exact Equal_cardinal.
  Qed.

  Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.

  Lemma cardinal_induction :
   forall P : t -> Type,
   (forall s, Empty s -> P s) ->
   (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
   forall n s, cardinal s = n -> P s.
  Proof.
  simple induction n; intros; auto.
  destruct (cardinal_inv_2 H) as (x,H0). 
  apply X0 with (remove x s) x; auto.
  apply X1; auto.
  rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto.
  Qed.

  Lemma set_induction :
   forall P : t -> Type,
   (forall s : t, Empty s -> P s) ->
   (forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') ->
   forall s : t, P s.
  Proof.
  intros; apply cardinal_induction with (cardinal s); auto.
  Qed.  

  (** Other properties of [fold]. *)

  Section Fold. 
  Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
  Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).

  Section Fold_1. 
  Variable i i':A.

  Lemma fold_empty : eqA (fold f empty i) i.
  Proof. 
  apply fold_1; auto.
  Qed.

  Lemma fold_equal : 
   forall s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
  Proof. 
  intros s; pattern s; apply set_induction; clear s; intros.
  trans_st i.
  apply fold_1; auto.
  sym_st; apply fold_1; auto.
  rewrite <- H0; auto.
  trans_st (f x (fold f s i)).
  apply fold_2 with (eqA := eqA); auto.
  sym_st; apply fold_2 with (eqA := eqA); auto.
  unfold Add in *; intros.
  rewrite <- H2; auto.
  Qed.
   
  Lemma fold_add : forall s x, ~In x s -> 
   eqA (fold f (add x s) i) (f x (fold f s i)).
  Proof. 
  intros; apply fold_2 with (eqA := eqA); auto.
  Qed.

  Lemma add_fold : forall s x, In x s -> 
   eqA (fold f (add x s) i) (fold f s i).
  Proof.
  intros; apply fold_equal; auto with set.
  Qed.

  Lemma remove_fold_1: forall s x, In x s -> 
   eqA (f x (fold f (remove x s) i)) (fold f s i).
  Proof.
  intros.
  sym_st.
  apply fold_2 with (eqA:=eqA); auto.
  Qed.

  Lemma remove_fold_2: forall s x, ~In x s -> 
   eqA (fold f (remove x s) i) (fold f s i).
  Proof.
  intros.
  apply fold_equal; auto with set.
  Qed.

  Lemma fold_commutes : forall s x, 
   eqA (fold f s (f x i)) (f x (fold f s i)).
  Proof.
  intros; pattern s; apply set_induction; clear s; intros.
  trans_st (f x i).
  apply fold_1; auto.
  sym_st.
  apply Comp; auto.
  apply fold_1; auto.
  trans_st (f x0 (fold f s (f x i))).
  apply fold_2 with (eqA:=eqA); auto.
  trans_st (f x0 (f x (fold f s i))).
  trans_st (f x (f x0 (fold f s i))).
  apply Comp; auto.
  sym_st.
  apply fold_2 with (eqA:=eqA); auto.
  Qed.

  Lemma fold_init : forall s, eqA i i' -> 
   eqA (fold f s i) (fold f s i').
  Proof. 
  intros; pattern s; apply set_induction; clear s; intros.
  trans_st i.
  apply fold_1; auto.
  trans_st i'.
  sym_st; apply fold_1; auto.
  trans_st (f x (fold f s i)).
  apply fold_2 with (eqA:=eqA); auto.
  trans_st (f x (fold f s i')).
  sym_st; apply fold_2 with (eqA:=eqA); auto.
  Qed.

  End Fold_1.
  Section Fold_2.
  Variable i:A.

  Lemma fold_union_inter : forall s s',
   eqA (fold f (union s s') (fold f (inter s s') i))
       (fold f s (fold f s' i)).
  Proof.
  intros; pattern s; apply set_induction; clear s; intros.
  trans_st (fold f s' (fold f (inter s s') i)).
  apply fold_equal; auto with set.
  trans_st (fold f s' i).
  apply fold_init; auto.
  apply fold_1; auto with set.
  sym_st; apply fold_1; auto.
  rename s'0 into s''.
  destruct (In_dec x s').
  (* In x s' *)   
  trans_st (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
  apply fold_init; auto.
  apply fold_2 with (eqA:=eqA); auto with set.
  rewrite inter_iff; intuition.
  trans_st (f x (fold f s (fold f s' i))).
  trans_st (fold f (union s s') (f x (fold f (inter s s') i))).
  apply fold_equal; auto.
  apply equal_sym; apply union_Equal with x; auto with set.
  trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
  apply fold_commutes; auto.
  sym_st; apply fold_2 with (eqA:=eqA); auto.
  (* ~(In x s') *)
  trans_st (f x (fold f (union s s') (fold f (inter s'' s') i))).
  apply fold_2 with (eqA:=eqA); auto with set.
  trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
  apply Comp;auto.
  apply fold_init;auto.
  apply fold_equal;auto.
  apply equal_sym; apply inter_Add_2 with x; auto with set.
  trans_st (f x (fold f s (fold f s' i))).
  sym_st; apply fold_2 with (eqA:=eqA); auto.
  Qed.

  End Fold_2.
  Section Fold_3.
  Variable i:A.

  Lemma fold_diff_inter : forall s s', 
   eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
  Proof.
  intros.
  trans_st (fold f (union (diff s s') (inter s s')) 
              (fold f (inter (diff s s') (inter s s')) i)).
  sym_st; apply fold_union_inter; auto.
  trans_st (fold f s (fold f (inter (diff s s') (inter s s')) i)).
  apply fold_equal; auto with set.
  apply fold_init; auto.
  apply fold_1; auto with set.
  Qed.

  Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') ->
   eqA (fold f (union s s') i) (fold f s (fold f s' i)).
  Proof.
  intros.
  trans_st (fold f (union s s') (fold f (inter s s') i)).
  apply fold_init; auto.
  sym_st; apply fold_1; auto with set.
  unfold Empty; intro a; generalize (H a); set_iff; tauto.
  apply fold_union_inter; auto.
  Qed.

  End Fold_3.
  End Fold.

  Lemma fold_plus :
   forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
  Proof.
  assert (st := gen_st nat).
  assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto). 
  assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto).
  intros s p; pattern s; apply set_induction; clear s; intros.
  rewrite (fold_1 st p (fun _ => S) H).
  rewrite (fold_1 st 0 (fun _ => S) H); trivial.
  assert (forall p s', Add x s s' -> fold (fun _ => S) s' p = S (fold (fun _ => S) s p)).
   change S with ((fun _ => S) x).  
   intros; apply fold_2; auto.
  rewrite H2; auto.
  rewrite (H2 0); auto.
  rewrite H.
  simpl; auto.
  Qed.

  (** properties of [cardinal] *)

  Lemma empty_cardinal : cardinal empty = 0.
  Proof.
  rewrite cardinal_fold; apply fold_1; auto.
  Qed.

  Hint Immediate empty_cardinal cardinal_1 : set.

  Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
  Proof.
  intros.
  rewrite (singleton_equal_add x).
  replace 0 with (cardinal empty); auto with set.
  apply cardinal_2 with x; auto with set.
  Qed.

  Hint Resolve singleton_cardinal: set.

  Lemma diff_inter_cardinal :
   forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
  Proof.
  intros; do 3 rewrite cardinal_fold.
  rewrite <- fold_plus.
  apply fold_diff_inter with (eqA:=@eq nat); auto.
  Qed.

  Lemma union_cardinal: 
   forall s s', (forall x, ~In x s\/~In x s') -> 
   cardinal (union s s')=cardinal s+cardinal s'.
  Proof.
  intros; do 3 rewrite cardinal_fold.
  rewrite <- fold_plus.
  apply fold_union; auto.
  Qed.

  Lemma subset_cardinal : 
   forall s s', s[<=]s' -> cardinal s <= cardinal s' .
  Proof.
  intros.
  rewrite <- (diff_inter_cardinal s' s).
  rewrite (inter_sym s' s).
  rewrite (inter_subset_equal H); auto with arith.
  Qed.

  Lemma subset_cardinal_lt : 
   forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
  Proof. 
  intros.
  rewrite <- (diff_inter_cardinal s' s).
  rewrite (inter_sym s' s).
  rewrite (inter_subset_equal H).
  generalize (@cardinal_inv_1 (diff s' s)).
  destruct (cardinal (diff s' s)).
  intro H2; destruct (H2 (refl_equal _) x).
  set_iff; auto.
  intros _.
  change (0 + cardinal s < S n + cardinal s).
  apply Plus.plus_lt_le_compat; auto with arith.
  Qed. 

  Theorem union_inter_cardinal :
   forall s s', cardinal (union s s') + cardinal (inter s s')  = cardinal s  + cardinal s' .
  Proof.
  intros.
  do 4 rewrite cardinal_fold.
  do 2 rewrite <- fold_plus.
  apply fold_union_inter with (eqA:=@eq nat); auto.
  Qed.

  Lemma union_cardinal_inter : 
   forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
  Proof.
  intros.
  rewrite <- union_inter_cardinal.
  rewrite Plus.plus_comm.
  auto with arith.
  Qed.

  Lemma union_cardinal_le : 
   forall s s', cardinal (union s s') <= cardinal s  + cardinal s'.
  Proof.
   intros; generalize (union_inter_cardinal s s').
   intros; rewrite <- H; auto with arith.
  Qed.

  Lemma add_cardinal_1 : 
   forall s x, In x s -> cardinal (add x s) = cardinal s.
  Proof.
  auto with set.  
  Qed.

  Lemma add_cardinal_2 :
   forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
  Proof.
  intros.
  do 2 rewrite cardinal_fold.
  change S with ((fun _ => S) x);
   apply fold_add with (eqA:=@eq nat); auto.
  Qed.

  Lemma remove_cardinal_1 :
   forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
  Proof.
  intros.
  do 2 rewrite cardinal_fold.
  change S with ((fun _ =>S) x).
  apply remove_fold_1 with (eqA:=@eq nat); auto.
  Qed.

  Lemma remove_cardinal_2 : 
   forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
  Proof. 
  auto with set.
  Qed.

  Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.

End Properties.