summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetPositive.v
blob: e5d55ac5b5e60f9186be12234fb2f05a1ef88f85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(** Efficient implementation of [FSetInterface.S] for positive keys,
    inspired from the [FMapPositive] module.

   This module was adapted by Alexandre Ren, Damien Pous, and Thomas
   Braibant (2010, LIG, CNRS, UMR 5217), from the [FMapPositive]
   module of Pierre Letouzey and Jean-Christophe Filliâtre, which in
   turn comes from the [FMap] framework of a work by Xavier Leroy and
   Sandrine Blazy (used for building certified compilers).
*)

Require Import Bool BinPos OrderedType OrderedTypeEx FSetInterface.

Set Implicit Arguments.

Local Open Scope lazy_bool_scope.
Local Open Scope positive_scope.

Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Local Unset Boolean Equality Schemes.


Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.

  Module E:=PositiveOrderedTypeBits.

  Definition elt := positive.

  Inductive tree :=
    | Leaf : tree
    | Node : tree -> bool -> tree -> tree.

  Scheme tree_ind := Induction for tree Sort Prop.

  Definition t := tree.

  Definition empty := Leaf.

  Fixpoint is_empty (m : t) : bool :=
   match m with
    | Leaf => true
    | Node l b r => negb b &&& is_empty l &&& is_empty r
   end.

  Fixpoint mem (i : positive) (m : t) : bool :=
    match m with
    | Leaf => false
    | Node l o r =>
        match i with
        | 1 => o
        | i~0 => mem i l
        | i~1 => mem i r
        end
    end.

  Fixpoint add (i : positive) (m : t) : t :=
    match m with
    | Leaf =>
        match i with
        | 1 => Node Leaf true Leaf
        | i~0 => Node (add i Leaf) false Leaf
        | i~1 => Node Leaf false (add i Leaf)
        end
    | Node l o r =>
        match i with
        | 1 => Node l true r
        | i~0 => Node (add i l) o r
        | i~1 => Node l o (add i r)
        end
    end.

  Definition singleton i := add i empty.

  (** helper function to avoid creating empty trees that are not leaves *)

  Definition node l (b: bool) r :=
    if b then Node l b r else
     match l,r with
       | Leaf,Leaf => Leaf
       | _,_ => Node l false r end.

  Fixpoint remove (i : positive) (m : t) : t :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match i with
          | 1 => node l false r
          | i~0 => node (remove i l) o r
          | i~1 => node l o (remove i r)
        end
    end.

  Fixpoint union (m m': t) :=
    match m with
      | Leaf => m'
      | Node l o r =>
        match m' with
          | Leaf => m
          | Node l' o' r' => Node (union l l') (o||o') (union r r')
        end
    end.

  Fixpoint inter (m m': t) :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match m' with
          | Leaf => Leaf
          | Node l' o' r' => node (inter l l') (o&&o') (inter r r')
        end
    end.

  Fixpoint diff (m m': t) :=
    match m with
      | Leaf => Leaf
      | Node l o r =>
        match m' with
          | Leaf => m
          | Node l' o' r' => node (diff l l') (o&&negb o') (diff r r')
        end
    end.

  Fixpoint equal (m m': t): bool :=
    match m with
      | Leaf => is_empty m'
      | Node l o r =>
        match m' with
          | Leaf => is_empty m
          | Node l' o' r' => eqb o o' &&& equal l l' &&& equal r r'
        end
    end.

  Fixpoint subset (m m': t): bool :=
    match m with
      | Leaf => true
      | Node l o r =>
        match m' with
          | Leaf => is_empty m
          | Node l' o' r' => (negb o ||| o') &&& subset l l' &&& subset r r'
        end
    end.

  (** reverses [y] and concatenate it with [x] *)

  Fixpoint rev_append y x :=
    match y with
      | 1 => x
      | y~1 => rev_append y x~1
      | y~0 => rev_append y x~0
    end.
  Infix "@" := rev_append (at level 60).
  Definition rev x := x@1.

  Section Fold.

    Variables B : Type.
    Variable f : positive -> B -> B.

    (** the additional argument, [i], records the current path, in
       reverse order (this should be more efficient: we reverse this argument
       only at present nodes only, rather than at each node of the tree).
       we also use this convention in all functions below
     *)

    Fixpoint xfold (m : t) (v : B) (i : positive) :=
      match m with
        | Leaf => v
        | Node l true r =>
          xfold r (f (rev i) (xfold l v i~0)) i~1
        | Node l false r =>
          xfold r (xfold l v i~0) i~1
      end.
    Definition fold m i := xfold m i 1.

  End Fold.

  Section Quantifiers.

    Variable f : positive -> bool.

    Fixpoint xforall (m : t) (i : positive) :=
      match m with
        | Leaf => true
        | Node l o r =>
          (negb o ||| f (rev i)) &&& xforall r i~1 &&& xforall l i~0
      end.
    Definition for_all m := xforall m 1.

    Fixpoint xexists (m : t) (i : positive) :=
      match m with
        | Leaf => false
        | Node l o r => (o &&& f (rev i)) ||| xexists r i~1 ||| xexists l i~0
      end.
    Definition exists_ m := xexists m 1.

    Fixpoint xfilter (m : t) (i : positive) :=
      match m with
        | Leaf => Leaf
        | Node l o r => node (xfilter l i~0) (o &&& f (rev i)) (xfilter r i~1)
      end.
    Definition filter m := xfilter m 1.

    Fixpoint xpartition (m : t) (i : positive) :=
      match m with
        | Leaf => (Leaf,Leaf)
        | Node l o r =>
          let (lt,lf) := xpartition l i~0 in
          let (rt,rf) := xpartition r i~1 in
             if o then
               let fi := f (rev i) in
                 (node lt fi rt, node lf (negb fi) rf)
             else
                 (node lt false rt, node lf false rf)
      end.
    Definition partition m := xpartition m 1.

  End Quantifiers.

  (** uses [a] to accumulate values rather than doing a lot of concatenations *)

  Fixpoint xelements (m : t) (i : positive) (a: list positive) :=
    match m with
      | Leaf => a
      | Node l false r => xelements l i~0 (xelements r i~1 a)
      | Node l true r => xelements l i~0 (rev i :: xelements r i~1 a)
    end.

  Definition elements (m : t) := xelements m 1 nil.

  Fixpoint cardinal (m : t) : nat :=
    match m with
      | Leaf => O
      | Node l false r => (cardinal l + cardinal r)%nat
      | Node l true r => S (cardinal l + cardinal r)
    end.

  Definition omap (f: elt -> elt) x :=
    match x with
      | None => None
      | Some i => Some (f i)
    end.

  (** would it be more efficient to use a path like in the above functions ? *)

  Fixpoint choose (m: t) :=
    match m with
      | Leaf => None
      | Node l o r => if o then Some 1 else
        match choose l with
          | None => omap xI (choose r)
          | Some i => Some i~0
        end
    end.

  Fixpoint min_elt (m: t) :=
    match m with
      | Leaf => None
      | Node l o r =>
        match min_elt l with
          | None => if o then Some 1 else omap xI (min_elt r)
          | Some i => Some i~0
        end
    end.

  Fixpoint max_elt (m: t) :=
    match m with
      | Leaf => None
      | Node l o r =>
        match max_elt r with
          | None => if o then Some 1 else omap xO (max_elt l)
          | Some i => Some i~1
        end
    end.

  (** lexicographic product, defined using a notation to keep things lazy *)

  Notation lex u v := match u with Eq => v | Lt => Lt | Gt => Gt end.

  Definition compare_bool a b :=
    match a,b with
      | false, true => Lt
      | true, false => Gt
      | _,_ => Eq
    end.

  Fixpoint compare_fun (m m': t): comparison :=
    match m,m' with
      | Leaf,_ => if is_empty m' then Eq else Lt
      | _,Leaf => if is_empty m then Eq else Gt
      | Node l o r,Node l' o' r' =>
        lex (compare_bool o o') (lex (compare_fun l l') (compare_fun r r'))
    end.


  Definition In i t := mem i t = true.
  Definition Equal s s' := forall a : elt, In a  s <-> In a  s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.

  Notation "s  [=]  t" := (Equal s t) (at level 70, no associativity).
  Notation "s  [<=]  t" := (Subset s t) (at level 70, no associativity).

  Definition eq := Equal.
  Definition lt m m' := compare_fun m m' = Lt.

  (** Specification of [In] *)

  Lemma In_1: forall s x y, E.eq x y -> In x s -> In y s.
  Proof. intros s x y ->. trivial. Qed.

  (** Specification of [eq] *)

  Lemma eq_refl: forall s, eq s s.
  Proof. unfold eq, Equal. reflexivity. Qed.

  Lemma eq_sym: forall s s', eq s s' -> eq s' s.
  Proof. unfold eq, Equal. intros. symmetry. trivial. Qed.

  Lemma eq_trans: forall s s' s'', eq s s' -> eq s' s'' -> eq s s''.
  Proof. unfold eq, Equal. intros ? ? ? H ? ?. rewrite H. trivial. Qed.

  (** Specification of [mem] *)

  Lemma mem_1: forall s x, In x s -> mem x s = true.
  Proof. unfold In. trivial. Qed.

  Lemma mem_2: forall s x, mem x s = true -> In x s.
  Proof. unfold In. trivial. Qed.

  (** Additional lemmas for mem  *)

  Lemma mem_Leaf: forall x, mem x Leaf = false.
  Proof. destruct x; trivial. Qed.

  (** Specification of [empty] *)

  Lemma empty_1 : Empty empty.
  Proof. unfold Empty, In. intro. rewrite mem_Leaf. discriminate. Qed.

  (** Specification of node  *)

  Lemma mem_node: forall x l o r, mem x (node l o r) = mem x (Node l o r).
  Proof.
    intros x l o r.
    case o; trivial.
    destruct l; trivial.
    destruct r; trivial.
    symmetry. destruct x.
      apply mem_Leaf.
      apply mem_Leaf.
      reflexivity.
  Qed.
  Local Opaque node.

  (** Specification of [is_empty] *)

  Lemma is_empty_spec: forall s, Empty s <-> is_empty s = true.
  Proof.
    unfold Empty, In.
    induction s as [|l IHl o r IHr]; simpl.
      setoid_rewrite mem_Leaf. firstorder.
      rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- IHl, <- IHr. clear IHl IHr.
      destruct o; simpl; split.
        intro H. elim (H 1). reflexivity.
        intuition discriminate.
        intro H. split. split. reflexivity.
          intro a. apply (H a~0).
          intro a. apply (H a~1).
        intros H [a|a|]; apply H || intro; discriminate.
  Qed.

  Lemma is_empty_1: forall s, Empty s -> is_empty s = true.
  Proof. intro. rewrite is_empty_spec. trivial. Qed.

  Lemma is_empty_2: forall s, is_empty s = true -> Empty s.
  Proof. intro. rewrite is_empty_spec. trivial. Qed.

  (** Specification of [subset] *)

  Lemma subset_Leaf_s: forall s, Leaf [<=] s.
  Proof. intros s i Hi. elim (empty_1 Hi). Qed.

  Lemma subset_spec: forall s s', s [<=] s' <-> subset s s' = true.
  Proof.
    induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl.
      split; intros. reflexivity. apply subset_Leaf_s.

      split; intros. reflexivity. apply subset_Leaf_s.

      rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- 2is_empty_spec.
      destruct o; simpl.
        split.
          intro H. elim (@empty_1 1). apply H. reflexivity.
          intuition discriminate.
        split; intro H.
          split. split. reflexivity.
          unfold Empty. intros a H1. apply (@empty_1 (a~0)). apply H. assumption.
          unfold Empty. intros a H1. apply (@empty_1 (a~1)). apply H. assumption.
          destruct H as [[_ Hl] Hr].
          intros [i|i|] Hi.
            elim (Hr i Hi).
            elim (Hl i Hi).
            discriminate.

      rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- IHl, <- IHr. clear.
      destruct o; simpl.
       split; intro H.
         split. split.
          destruct o'; trivial.
          specialize (H 1). unfold In in H. simpl in H. apply H. reflexivity.
          intros i Hi. apply (H i~0). apply Hi.
          intros i Hi. apply (H i~1). apply Hi.
         destruct H as [[Ho' Hl] Hr]. rewrite Ho'.
          intros i Hi. destruct i.
            apply (Hr i). assumption.
            apply (Hl i). assumption.
            assumption.
       split; intros.
         split. split. reflexivity.
           intros i Hi. apply (H i~0). apply Hi.
           intros i Hi. apply (H i~1). apply Hi.
           intros i Hi. destruct i; destruct H as [[H Hl] Hr].
             apply (Hr i). assumption.
             apply (Hl i). assumption.
             discriminate Hi.
  Qed.


  Lemma subset_1: forall s s', Subset s s' -> subset s s' = true.
  Proof. intros s s'. apply -> subset_spec; trivial. Qed.

  Lemma subset_2: forall s s', subset s s' = true -> Subset s s'.
  Proof. intros s s'. apply <- subset_spec; trivial. Qed.

  (** Specification of [equal] (via subset) *)

  Lemma equal_subset: forall s s', equal s s' = subset s s' && subset s' s.
  Proof.
    induction s as [|l IHl o r IHr]; intros [|l' o' r']; simpl; trivial.
      destruct o. reflexivity. rewrite andb_comm. reflexivity.
      rewrite <- 6andb_lazy_alt. rewrite eq_iff_eq_true.
       rewrite 7andb_true_iff, eqb_true_iff.
      rewrite IHl, IHr, 2andb_true_iff. clear IHl IHr. intuition subst.
       destruct o'; reflexivity.
       destruct o'; reflexivity.
       destruct o; auto. destruct o'; trivial.
  Qed.

  Lemma equal_spec: forall s s', Equal s s' <-> equal s s' = true.
  Proof.
    intros. rewrite equal_subset. rewrite andb_true_iff.
    rewrite <- 2subset_spec. unfold Equal, Subset. firstorder.
  Qed.

  Lemma equal_1: forall s s', Equal s s' -> equal s s' = true.
  Proof. intros s s'. apply -> equal_spec; trivial. Qed.

  Lemma equal_2: forall s s', equal s s' = true -> Equal s s'.
  Proof. intros s s'. apply <- equal_spec; trivial. Qed.

  Lemma eq_dec : forall s s', { eq s s' } + { ~ eq s s' }.
  Proof.
    unfold eq.
    intros. case_eq (equal s s'); intro H.
     left. apply equal_2, H.
     right. abstract (intro H'; rewrite (equal_1 H') in H; discriminate).
  Defined.

  (** (Specified) definition of [compare] *)

  Lemma lex_Opp: forall u v u' v', u = CompOpp u' -> v = CompOpp v' ->
    lex u v = CompOpp (lex u' v').
  Proof. intros ? ? u' ? -> ->. case u'; reflexivity. Qed.

  Lemma compare_bool_inv: forall b b',
    compare_bool b b' = CompOpp (compare_bool b' b).
  Proof. intros [|] [|]; reflexivity. Qed.

  Lemma compare_inv: forall s s', compare_fun s s' = CompOpp (compare_fun s' s).
  Proof.
    induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r']; trivial.
    unfold compare_fun. case is_empty; reflexivity.
    unfold compare_fun. case is_empty; reflexivity.
    simpl. rewrite compare_bool_inv.
     case compare_bool; simpl; trivial; apply lex_Opp; auto.
  Qed.

  Lemma lex_Eq: forall u v, lex u v = Eq <-> u=Eq /\ v=Eq.
  Proof. intros u v; destruct u; intuition discriminate. Qed.

  Lemma compare_bool_Eq: forall b1 b2,
    compare_bool b1 b2 = Eq <-> eqb b1 b2 = true.
  Proof. intros [|] [|]; intuition discriminate. Qed.

  Lemma compare_equal: forall s s', compare_fun s s' = Eq <-> equal s s' = true.
  Proof.
    induction s as [|l IHl o r IHr]; destruct s' as [|l' o' r'].
     simpl. tauto.
     unfold compare_fun, equal. case is_empty; intuition discriminate.
     unfold compare_fun, equal. case is_empty; intuition discriminate.
     simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff.
     rewrite <- IHl, <- IHr, <- compare_bool_Eq. clear IHl IHr.
     rewrite and_assoc. rewrite <- 2lex_Eq. reflexivity.
  Qed.


  Lemma compare_gt: forall s s', compare_fun s s' = Gt -> lt s' s.
  Proof.
    unfold lt. intros s s'. rewrite compare_inv.
     case compare_fun; trivial; intros; discriminate.
  Qed.

  Lemma compare_eq: forall s s', compare_fun s s' = Eq -> eq s s'.
  Proof.
    unfold eq. intros s s'. rewrite compare_equal, equal_spec. trivial.
  Qed.

  Lemma compare : forall s s' : t, Compare lt eq s s'.
  Proof.
    intros. case_eq (compare_fun s s'); intro H.
    apply EQ. apply compare_eq, H.
    apply LT. assumption.
    apply GT. apply compare_gt, H.
  Defined.

  Section lt_spec.

  Inductive ct: comparison -> comparison -> comparison -> Prop :=
  | ct_xxx: forall x, ct x  x  x
  | ct_xex: forall x, ct x  Eq x
  | ct_exx: forall x, ct Eq x  x
  | ct_glx: forall x, ct Gt Lt x
  | ct_lgx: forall x, ct Lt Gt x.

  Lemma ct_cxe: forall x, ct (CompOpp x) x Eq.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xce: forall x, ct x (CompOpp x) Eq.
  Proof. destruct x; constructor. Qed.

  Lemma ct_lxl: forall x, ct Lt x Lt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_gxg: forall x, ct Gt x Gt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xll: forall x, ct x Lt Lt.
  Proof. destruct x; constructor. Qed.

  Lemma ct_xgg: forall x, ct x Gt Gt.
  Proof. destruct x; constructor. Qed.

  Local Hint Constructors ct: ct.
  Local Hint Resolve ct_cxe ct_xce ct_lxl ct_xll ct_gxg ct_xgg: ct.
  Ltac ct := trivial with ct.

  Lemma ct_lex: forall u v w u' v' w',
    ct u v w -> ct u' v' w' -> ct (lex u u') (lex v v') (lex w w').
  Proof.
    intros u v w u' v' w' H H'.
    inversion_clear H; inversion_clear H'; ct; destruct w; ct; destruct w'; ct.
  Qed.

  Lemma ct_compare_bool:
    forall a b c, ct (compare_bool a b) (compare_bool b c) (compare_bool a c).
  Proof.
    intros [|] [|] [|]; constructor.
  Qed.

  Lemma compare_x_Leaf: forall s,
    compare_fun s Leaf = if is_empty s then Eq else Gt.
  Proof.
    intros. rewrite compare_inv. simpl. case (is_empty s); reflexivity.
  Qed.

  Lemma compare_empty_x: forall a, is_empty a = true ->
    forall b, compare_fun a b = if is_empty b then Eq else Lt.
  Proof.
    induction a as [|l IHl o r IHr]; trivial.
    destruct o. intro; discriminate.
    simpl is_empty. rewrite <- andb_lazy_alt, andb_true_iff.
    intros [Hl Hr].
    destruct b as [|l' [|] r']; simpl compare_fun; trivial.
     rewrite Hl, Hr. trivial.
     rewrite (IHl Hl), (IHr Hr). simpl.
     case (is_empty l'); case (is_empty r'); trivial.
  Qed.

  Lemma compare_x_empty: forall a, is_empty a = true ->
    forall b, compare_fun b a = if is_empty b then Eq else Gt.
  Proof.
    setoid_rewrite <- compare_x_Leaf.
    intros. rewrite 2(compare_inv b), (compare_empty_x _ H). reflexivity.
  Qed.

  Lemma ct_compare_fun:
    forall a b c, ct (compare_fun a b) (compare_fun b c) (compare_fun a c).
  Proof.
    induction a as [|l IHl o r IHr]; intros s' s''.
     destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r'']; ct.
      rewrite compare_inv. ct.
      unfold compare_fun at 1. case_eq (is_empty (Node l' o' r')); intro H'.
       rewrite (compare_empty_x _ H'). ct.
       unfold compare_fun at 2. case_eq (is_empty (Node l'' o'' r'')); intro H''.
        rewrite (compare_x_empty _ H''), H'. ct.
        ct.

     destruct s' as [|l' o' r']; destruct s'' as [|l'' o'' r''].
      ct.
      unfold compare_fun at 2. rewrite compare_x_Leaf.
      case_eq (is_empty (Node l o r)); intro H.
       rewrite (compare_empty_x _ H). ct.
       case_eq (is_empty (Node l'' o'' r'')); intro H''.
        rewrite (compare_x_empty _ H''), H. ct.
        ct.

      rewrite 2 compare_x_Leaf.
      case_eq (is_empty (Node l o r)); intro H.
       rewrite compare_inv, (compare_x_empty _ H). ct.
       case_eq (is_empty (Node l' o' r')); intro H'.
        rewrite (compare_x_empty _ H'), H. ct.
        ct.

      simpl compare_fun. apply ct_lex. apply ct_compare_bool.
       apply ct_lex; trivial.
  Qed.

  End lt_spec.

  Lemma lt_trans: forall s s' s'', lt s s' -> lt s' s'' -> lt s s''.
  Proof.
    unfold lt. intros a b c. assert (H := ct_compare_fun a b c).
    inversion_clear H; trivial; intros; discriminate.
  Qed.

  Lemma lt_not_eq: forall s s', lt s s' -> ~ eq s s'.
  Proof.
    unfold lt, eq. intros s s' H H'.
     rewrite equal_spec, <- compare_equal in H'. congruence.
  Qed.

  (** Specification of [add] *)

  Lemma add_spec: forall x y s, In y (add x s) <-> x=y \/ In y s.
  Proof.
    unfold In. induction x; intros [y|y|] [|l o r]; simpl mem;
    try (rewrite IHx; clear IHx); rewrite ?mem_Leaf; intuition congruence.
  Qed.

  Lemma add_1: forall s x y, x = y -> In y (add x s).
  Proof. intros. apply <- add_spec. left. assumption. Qed.

  Lemma add_2: forall s x y, In y s -> In y (add x s).
  Proof. intros. apply <- add_spec. right. assumption. Qed.

  Lemma add_3: forall s x y, x<>y -> In y (add x s) -> In y s.
  Proof.
    intros s x y H. rewrite add_spec. intros [->|?]; trivial. elim H; trivial.
  Qed.

  (** Specification of [remove] *)

  Lemma remove_spec: forall x y s, In y (remove x s) <-> x<>y /\ In y s.
  Proof.
    unfold In.
    induction x; intros [y|y|] [|l o r]; simpl remove; rewrite ?mem_node;
     simpl mem; try (rewrite IHx; clear IHx); rewrite ?mem_Leaf;
     intuition congruence.
  Qed.

  Lemma remove_1: forall s x y, x=y -> ~ In y (remove x s).
  Proof. intros. rewrite remove_spec. tauto. Qed.

  Lemma remove_2: forall s x y, x<>y -> In y s -> In y (remove x s).
  Proof. intros. rewrite remove_spec. split; assumption. Qed.

  Lemma remove_3: forall s x y, In y (remove x s) -> In y s.
  Proof. intros s x y. rewrite remove_spec. tauto. Qed.

  (** Specification of [singleton] *)

  Lemma singleton_1: forall x y, In y (singleton x) -> x=y.
  Proof.
    unfold singleton. intros x y. rewrite add_spec.
    unfold In. rewrite mem_Leaf. intuition discriminate.
  Qed.

  Lemma singleton_2: forall x y, x = y -> In y (singleton x).
  Proof.
    unfold singleton. intros. apply add_1. assumption.
  Qed.

  (** Specification of [union] *)

  Lemma union_spec: forall x s s', In x (union s s') <-> In x s \/ In x s'.
  Proof.
    unfold In.
    induction x; destruct s; destruct s'; simpl union; simpl mem;
      try (rewrite IHx; clear IHx); try intuition congruence.
      apply orb_true_iff.
  Qed.

  Lemma union_1: forall s s' x, In x (union s s') -> In x s \/ In x s'.
  Proof. intros. apply -> union_spec. assumption. Qed.

  Lemma union_2: forall s s' x, In x s -> In x (union s s').
  Proof. intros. apply <- union_spec. left. assumption. Qed.

  Lemma union_3: forall s s' x, In x s' -> In x (union s s').
  Proof. intros. apply <- union_spec. right. assumption. Qed.

  (** Specification of [inter] *)

  Lemma inter_spec: forall x s s', In x (inter s s') <-> In x s /\ In x s'.
  Proof.
    unfold In.
    induction x; destruct s; destruct s'; simpl inter; rewrite ?mem_node;
     simpl mem; try (rewrite IHx; clear IHx); try intuition congruence.
     apply andb_true_iff.
  Qed.

  Lemma inter_1: forall s s' x, In x (inter s s') -> In x s.
  Proof. intros s s' x. rewrite inter_spec. tauto. Qed.

  Lemma inter_2: forall s s' x, In x (inter s s') -> In x s'.
  Proof. intros s s' x. rewrite inter_spec. tauto. Qed.

  Lemma inter_3: forall s s' x, In x s -> In x s' -> In x (inter s s').
  Proof. intros. rewrite inter_spec. split; assumption. Qed.

  (** Specification of [diff] *)

  Lemma diff_spec: forall x s s', In x (diff s s') <-> In x s /\ ~ In x s'.
  Proof.
    unfold In.
    induction x; destruct s; destruct s' as [|l' o' r']; simpl diff;
     rewrite ?mem_node; simpl mem;
      try (rewrite IHx; clear IHx); try intuition congruence.
      rewrite andb_true_iff. destruct o'; intuition discriminate.
  Qed.

  Lemma diff_1: forall s s' x, In x (diff s s') -> In x s.
  Proof. intros s s' x. rewrite diff_spec. tauto. Qed.

  Lemma diff_2: forall s s' x, In x (diff s s') -> ~ In x s'.
  Proof. intros s s' x. rewrite diff_spec. tauto. Qed.

  Lemma diff_3: forall s s' x, In x s -> ~ In x s' -> In x (diff s s').
  Proof. intros. rewrite diff_spec. split; assumption. Qed.

  (** Specification of [fold] *)

  Lemma fold_1: forall s (A : Type) (i : A) (f : elt -> A -> A),
      fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof.
    unfold fold, elements. intros s A i f. revert s i.
    set (f' := fun a e => f e a).
    assert (H: forall s i j acc,
      fold_left f' acc (xfold f s i j) =
      fold_left f' (xelements s j acc) i).

    induction s as [|l IHl o r IHr]; intros; trivial.
      destruct o; simpl xelements; simpl xfold.
        rewrite IHr, <- IHl. reflexivity.
        rewrite IHr. apply IHl.

    intros. exact (H s i 1 nil).
  Qed.

  (** Specification of [cardinal] *)

  Lemma cardinal_1: forall s, cardinal s = length (elements s).
  Proof.
    unfold elements.
    assert (H: forall s j acc,
                (cardinal s + length acc)%nat = length (xelements s j acc)).

    induction s as [|l IHl b r IHr]; intros j acc; simpl; trivial. destruct b.
      rewrite <- IHl. simpl. rewrite <- IHr.
       rewrite <- plus_n_Sm, Plus.plus_assoc. reflexivity.
      rewrite <- IHl, <- IHr. rewrite Plus.plus_assoc. reflexivity.

    intros. rewrite <- H. simpl. rewrite Plus.plus_comm. reflexivity.
  Qed.

  (** Specification of [filter] *)

  Lemma xfilter_spec: forall f s x i,
    In x (xfilter f s i) <-> In x s /\ f (i@x) = true.
  Proof.
    intro f. unfold In.
    induction s as [|l IHl o r IHr]; intros x i; simpl xfilter.
     rewrite mem_Leaf. intuition discriminate.
     rewrite mem_node. destruct x; simpl.
       rewrite IHr. reflexivity.
       rewrite IHl. reflexivity.
       rewrite <- andb_lazy_alt. apply andb_true_iff.
  Qed.

  Lemma filter_1 : forall s x f, compat_bool E.eq f ->
    In x (filter f s) -> In x s.
  Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.

  Lemma filter_2 : forall s x f, compat_bool E.eq f ->
    In x (filter f s) -> f x = true.
  Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.

  Lemma filter_3 : forall s x f, compat_bool E.eq f -> In x s ->
    f x = true -> In x (filter f s).
  Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.


  (** Specification of [for_all] *)

  Lemma xforall_spec: forall f s i,
    xforall f s i = true <-> For_all (fun x => f (i@x) = true) s.
  Proof.
    unfold For_all, In. intro f.
    induction s as [|l IHl o r IHr]; intros i; simpl.
     setoid_rewrite mem_Leaf. intuition discriminate.
     rewrite <- 2andb_lazy_alt, <- orb_lazy_alt, 2 andb_true_iff.
     rewrite IHl, IHr. clear IHl IHr.
      split.
       intros [[Hi Hr] Hl] x. destruct x; simpl; intro H.
        apply Hr, H.
        apply Hl, H.
        rewrite H in Hi. assumption.
       intro H; intuition.
        specialize (H 1). destruct o. apply H. reflexivity. reflexivity.
        apply H. assumption.
        apply H. assumption.
  Qed.

  Lemma for_all_1 : forall s f, compat_bool E.eq f ->
    For_all (fun x => f x = true) s -> for_all f s = true.
  Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.

  Lemma for_all_2 : forall s f, compat_bool E.eq f ->
    for_all f s = true -> For_all (fun x => f x = true) s.
  Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.


  (** Specification of [exists] *)

  Lemma xexists_spec: forall f s i,
    xexists f s i = true <-> Exists (fun x => f (i@x) = true) s.
  Proof.
    unfold Exists, In. intro f.
    induction s as [|l IHl o r IHr]; intros i; simpl.
     setoid_rewrite mem_Leaf. firstorder.
     rewrite <- 2orb_lazy_alt, 2orb_true_iff, <- andb_lazy_alt, andb_true_iff.
     rewrite IHl, IHr. clear IHl IHr.
      split.
       intros [[Hi|[x Hr]]|[x Hl]].
        exists 1. exact Hi.
        exists x~1. exact Hr.
        exists x~0. exact Hl.
       intros [[x|x|] H]; eauto.
  Qed.

  Lemma exists_1 : forall s f, compat_bool E.eq f ->
      Exists (fun x => f x = true) s -> exists_ f s = true.
  Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.

  Lemma exists_2 : forall s f, compat_bool E.eq f ->
      exists_ f s = true -> Exists (fun x => f x = true) s.
  Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.


  (** Specification of [partition] *)

  Lemma partition_filter : forall s f,
    partition f s = (filter f s, filter (fun x => negb (f x)) s).
  Proof.
    unfold partition, filter. intros s f. generalize 1 as j.
    induction s as [|l IHl o r IHr]; intro j.
      reflexivity.
      destruct o; simpl; rewrite IHl, IHr; reflexivity.
  Qed.

  Lemma partition_1 : forall s f, compat_bool E.eq f ->
      Equal (fst (partition f s)) (filter f s).
  Proof. intros. rewrite partition_filter. apply eq_refl. Qed.

  Lemma partition_2 : forall s f, compat_bool E.eq f ->
      Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof. intros. rewrite partition_filter. apply eq_refl. Qed.


  (** Specification of [elements] *)

  Notation InL := (InA E.eq).

  Lemma xelements_spec: forall s j acc y,
    InL y (xelements s j acc)
    <->
    InL y acc \/ exists x, y=(j@x) /\ mem x s = true.
  Proof.
    induction s as [|l IHl o r IHr]; simpl.
      intros. split; intro H.
        left. assumption.
        destruct H as [H|[x [Hx Hx']]]. assumption. elim (empty_1 Hx').

      intros j acc y. case o.
        rewrite IHl. rewrite InA_cons. rewrite IHr. clear IHl IHr. split.
          intros [[H|[H|[x [-> H]]]]|[x [-> H]]]; eauto.
            right. exists x~1. auto.
            right. exists x~0. auto.
          intros [H|[x [-> H]]].
            eauto.
            destruct x.
              left. right. right. exists x; auto.
              right. exists x; auto.
              left. left. reflexivity.

        rewrite IHl, IHr. clear IHl IHr. split.
          intros [[H|[x [-> H]]]|[x [-> H]]].
            eauto.
            right. exists x~1. auto.
            right. exists x~0. auto.
          intros [H|[x [-> H]]].
            eauto.
            destruct x.
              left. right.  exists x; auto.
              right. exists x; auto.
              discriminate.
  Qed.

  Lemma elements_1: forall s x, In x s -> InL x (elements s).
  Proof.
    unfold elements, In. intros.
    rewrite xelements_spec. right. exists x. auto.
  Qed.

  Lemma elements_2: forall s x, InL x (elements s) -> In x s.
  Proof.
    unfold elements, In. intros s x H.
    rewrite xelements_spec in H. destruct H as [H|[y [H H']]].
      inversion_clear H.
      rewrite H. assumption.
  Qed.

  Lemma lt_rev_append: forall j x y, E.lt x y -> E.lt (j@x) (j@y).
  Proof. induction j; intros; simpl; auto. Qed.

  Lemma elements_3: forall s, sort E.lt (elements s).
  Proof.
    unfold elements.
    assert (H: forall s j acc,
      sort E.lt acc ->
      (forall x y, In x s ->  InL y acc -> E.lt (j@x) y) ->
      sort E.lt (xelements s j acc)).

    induction s as [|l IHl o r IHr]; simpl; trivial.
    intros j acc Hacc Hsacc. destruct o.
      apply IHl. constructor.
       apply IHr. apply Hacc.
       intros x y Hx Hy. apply Hsacc; assumption.
       case_eq (xelements r j~1 acc). constructor.
       intros z q H. constructor.
       assert (H': InL z (xelements r j~1 acc)).
        rewrite H. constructor. reflexivity.
       clear H q. rewrite xelements_spec in H'. destruct H' as [Hy|[x [-> Hx]]].
         apply (Hsacc 1 z); trivial. reflexivity.
         simpl. apply lt_rev_append. exact I.
       intros x y Hx Hy. inversion_clear Hy.
         rewrite H. simpl. apply lt_rev_append. exact I.
         rewrite xelements_spec in H. destruct H as [Hy|[z [-> Hy]]].
           apply Hsacc; assumption.
           simpl. apply lt_rev_append. exact I.

      apply IHl. apply IHr. apply Hacc.
       intros x y Hx Hy. apply Hsacc; assumption.
       intros x y Hx Hy. rewrite xelements_spec in Hy.
        destruct Hy as [Hy|[z [-> Hy]]].
         apply Hsacc; assumption.
         simpl. apply lt_rev_append. exact I.

    intros. apply H. constructor.
      intros x y _ H'. inversion H'.
  Qed.

  Lemma elements_3w: forall s, NoDupA E.eq (elements s).
  Proof.
    intro. apply SortA_NoDupA with E.lt.
      constructor.
       intro. apply E.eq_refl.
       intro. apply E.eq_sym.
       intro. apply E.eq_trans.
      constructor.
       intros x H. apply E.lt_not_eq in H. apply H. reflexivity.
       intro. apply E.lt_trans.
      intros ? ? <- ? ? <-. reflexivity.
      apply elements_3.
  Qed.


  (** Specification of [choose] *)

  Lemma choose_1: forall s x, choose s = Some x -> In x s.
  Proof.
    induction s as [| l IHl o r IHr]; simpl.
      intros. discriminate.
      destruct o.
        intros x H. injection H; intros; subst. reflexivity.
        revert IHl. case choose.
          intros p Hp x H. injection H; intros; subst; clear H. apply Hp.
           reflexivity.
          intros _ x. revert IHr. case choose.
            intros p Hp H. injection H; intros; subst; clear H. apply Hp.
            reflexivity.
            intros. discriminate.
  Qed.

  Lemma choose_2: forall s, choose s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_1.
      destruct o.
        discriminate.
        simpl in H. destruct (choose l).
          discriminate.
          destruct (choose r).
            discriminate.
            intros [a|a|].
              apply IHr. reflexivity.
              apply IHl. reflexivity.
              discriminate.
  Qed.

  Lemma choose_empty: forall s, is_empty s = true -> choose s = None.
  Proof.
    intros s Hs. case_eq (choose s); trivial.
    intros p Hp. apply choose_1 in Hp. apply is_empty_2 in Hs. elim (Hs _ Hp).
  Qed.

  Lemma choose_3': forall s s', Equal s s' -> choose s = choose s'.
  Proof.
    setoid_rewrite equal_spec.
    induction s as [|l IHl o r IHr].
      intros. symmetry. apply choose_empty. assumption.

      destruct s' as [|l' o' r'].
        generalize (Node l o r) as s. simpl. intros. apply choose_empty.
        rewrite <- equal_spec in H. apply eq_sym in H. rewrite equal_spec in H.
        assumption.

        simpl. rewrite <- 2andb_lazy_alt, 2andb_true_iff, eqb_true_iff.
        intros [[<- Hl] Hr]. rewrite (IHl _ Hl), (IHr _ Hr). reflexivity.
  Qed.

  Lemma choose_3: forall s s' x y,
    choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.
  Proof. intros s s' x y Hx Hy H. apply choose_3' in H. congruence. Qed.


  (** Specification of [min_elt] *)

  Lemma min_elt_1: forall s x, min_elt s = Some x -> In x s.
  Proof.
   unfold In.
   induction s as [| l IHl o r IHr]; simpl.
     intros. discriminate.
     intros x. destruct (min_elt l); intros.
       injection H. intros <-. apply IHl. reflexivity.
       destruct o; simpl.
         injection H. intros <-. reflexivity.
         destruct (min_elt r); simpl in *.
           injection H. intros <-. apply IHr. reflexivity.
           discriminate.
  Qed.

  Lemma min_elt_3: forall s, min_elt s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_1.
      intros [a|a|].
        apply IHr. revert H. clear. simpl. destruct (min_elt r); trivial.
          case min_elt; intros; try discriminate. destruct o; discriminate.
        apply IHl. revert H. clear. simpl. destruct (min_elt l); trivial.
         intro; discriminate.
        revert H. clear. simpl. case min_elt; intros; try discriminate.
         destruct o; discriminate.
  Qed.

  Lemma min_elt_2: forall s x y, min_elt s = Some x -> In y s -> ~ E.lt y x.
  Proof.
    unfold In.
    induction s as [|l IHl o r IHr]; intros x y H H'.
      discriminate.
      simpl in H. case_eq (min_elt l).
        intros p Hp. rewrite Hp in H. injection H; intros <-.
        destruct y as [z|z|]; simpl; intro; trivial. apply (IHl p z); trivial.
        intro Hp; rewrite Hp in H. apply min_elt_3 in Hp.
        destruct o.
          injection H. intros <- Hl. clear H.
          destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').

          destruct (min_elt r).
            injection H. intros <-. clear H.
            destruct y as [z|z|].
              apply (IHr p z); trivial.
              elim (Hp _ H').
              discriminate.
            discriminate.
  Qed.


  (** Specification of [max_elt] *)

  Lemma max_elt_1: forall s x, max_elt s = Some x -> In x s.
  Proof.
   unfold In.
   induction s as [| l IHl o r IHr]; simpl.
     intros. discriminate.
     intros x. destruct (max_elt r); intros.
       injection H. intros <-. apply IHr. reflexivity.
       destruct o; simpl.
         injection H. intros <-. reflexivity.
         destruct (max_elt l); simpl in *.
           injection H. intros <-. apply IHl. reflexivity.
           discriminate.
  Qed.

  Lemma max_elt_3: forall s, max_elt s = None -> Empty s.
  Proof.
    unfold Empty, In. intros s H.
    induction s as [|l IHl o r IHr].
      intro. apply empty_1.
      intros [a|a|].
        apply IHr. revert H. clear. simpl. destruct (max_elt r); trivial.
         intro; discriminate.
        apply IHl. revert H. clear. simpl. destruct (max_elt l); trivial.
          case max_elt; intros; try discriminate. destruct o; discriminate.
        revert H. clear. simpl. case max_elt; intros; try discriminate.
         destruct o; discriminate.
  Qed.

  Lemma max_elt_2: forall s x y, max_elt s = Some x -> In y s -> ~ E.lt x y.
  Proof.
    unfold In.
    induction s as [|l IHl o r IHr]; intros x y H H'.
      discriminate.
      simpl in H. case_eq (max_elt r).
        intros p Hp. rewrite Hp in H. injection H; intros <-.
        destruct y as [z|z|]; simpl; intro; trivial. apply (IHr p z); trivial.
        intro Hp; rewrite Hp in H. apply max_elt_3 in Hp.
        destruct o.
          injection H. intros <- Hl. clear H.
          destruct y as [z|z|]; simpl; trivial. elim (Hp _ H').

          destruct (max_elt l).
            injection H. intros <-. clear H.
            destruct y as [z|z|].
              elim (Hp _ H').
              apply (IHl p z); trivial.
              discriminate.
            discriminate.
  Qed.

End PositiveSet.