summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetList.v
blob: ca86ffccc2702facb71c4b56dbbf98a77c48f29a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id: FSetList.v 8667 2006-03-28 11:59:44Z letouzey $ *)

(** * Finite sets library *)

(** This file proposes an implementation of the non-dependant 
    interface [FSetInterface.S] using strictly ordered list. *)

Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.

(** * Functions over lists

   First, we provide sets as lists which are not necessarily sorted.
   The specs are proved under the additional condition of being sorted. 
   And the functions returning sets are proved to preserve this invariant. *)

Module Raw (X: OrderedType).
 
  Module E := X.
  Module MX := OrderedTypeFacts X.
  Import MX.

  Definition elt := X.t.
  Definition t := list elt.

  Definition empty : t := nil.

  Definition is_empty (l : t) : bool := if l then true else false.

  (** ** The set operations. *)

  Fixpoint mem (x : elt) (s : t) {struct s} : bool :=
    match s with
    | nil => false
    | y :: l =>
        match X.compare x y with
        | LT _ => false
        | EQ _ => true
        | GT _ => mem x l
        end
    end.

  Fixpoint add (x : elt) (s : t) {struct s} : t :=
    match s with
    | nil => x :: nil
    | y :: l =>
        match X.compare x y with
        | LT _ => x :: s
        | EQ _ => s
        | GT _ => y :: add x l
        end
    end.

  Definition singleton (x : elt) : t := x :: nil. 

  Fixpoint remove (x : elt) (s : t) {struct s} : t :=
    match s with
    | nil => nil
    | y :: l =>
        match X.compare x y with
        | LT _ => s
        | EQ _ => l
        | GT _ => y :: remove x l
        end
    end.  
  
  Fixpoint union (s : t) : t -> t :=
    match s with
    | nil => fun s' => s'
    | x :: l =>
        (fix union_aux (s' : t) : t :=
           match s' with
           | nil => s
           | x' :: l' =>
               match X.compare x x' with
               | LT _ => x :: union l s'
               | EQ _ => x :: union l l'
               | GT _ => x' :: union_aux l'
               end
           end)
    end.      

  Fixpoint inter (s : t) : t -> t :=
    match s with
    | nil => fun _ => nil
    | x :: l =>
        (fix inter_aux (s' : t) : t :=
           match s' with
           | nil => nil
           | x' :: l' =>
               match X.compare x x' with
               | LT _ => inter l s'
               | EQ _ => x :: inter l l'
               | GT _ => inter_aux l'
               end
           end)
    end.  
  
  Fixpoint diff (s : t) : t -> t :=
    match s with
    | nil => fun _ => nil
    | x :: l =>
        (fix diff_aux (s' : t) : t :=
           match s' with
           | nil => s
           | x' :: l' =>
               match X.compare x x' with
               | LT _ => x :: diff l s'
               | EQ _ => diff l l'
               | GT _ => diff_aux l'
               end
           end)
    end.  
   
  Fixpoint equal (s : t) : t -> bool :=
    fun s' : t =>
    match s, s' with
    | nil, nil => true
    | x :: l, x' :: l' =>
        match X.compare x x' with
        | EQ _ => equal l l'
        | _ => false
        end
    | _, _ => false
    end.

  Fixpoint subset (s s' : t) {struct s'} : bool :=
    match s, s' with
    | nil, _ => true
    | x :: l, x' :: l' =>
        match X.compare x x' with
        | LT _ => false
        | EQ _ => subset l l'
        | GT _ => subset s l'
        end
    | _, _ => false
    end.

  Fixpoint fold (B : Set) (f : elt -> B -> B) (s : t) {struct s} : 
   B -> B := fun i => match s with
                      | nil => i
                      | x :: l => fold f l (f x i)
                      end.  

  Fixpoint filter (f : elt -> bool) (s : t) {struct s} : t :=
    match s with
    | nil => nil
    | x :: l => if f x then x :: filter f l else filter f l
    end.  

  Fixpoint for_all (f : elt -> bool) (s : t) {struct s} : bool :=
    match s with
    | nil => true
    | x :: l => if f x then for_all f l else false
    end.  
 
  Fixpoint exists_ (f : elt -> bool) (s : t) {struct s} : bool :=
    match s with
    | nil => false
    | x :: l => if f x then true else exists_ f l
    end.

  Fixpoint partition (f : elt -> bool) (s : t) {struct s} : 
   t * t :=
    match s with
    | nil => (nil, nil)
    | x :: l =>
        let (s1, s2) := partition f l in
        if f x then (x :: s1, s2) else (s1, x :: s2)
    end.

  Definition cardinal (s : t) : nat := length s.

  Definition elements (x : t) : list elt := x.

  Definition min_elt (s : t) : option elt :=
    match s with
    | nil => None
    | x :: _ => Some x
    end.

  Fixpoint max_elt (s : t) : option elt :=
    match s with
    | nil => None
    | x :: nil => Some x
    | _ :: l => max_elt l
    end.

  Definition choose := min_elt.

  (** ** Proofs of set operation specifications. *)

  Notation Sort := (sort X.lt).
  Notation Inf := (lelistA X.lt).
  Notation In := (InA X.eq).

  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) (s : t) := exists x, In x s /\ P x.

  Lemma mem_1 :
   forall (s : t) (Hs : Sort s) (x : elt), In x s -> mem x s = true. 
  Proof.
  simple induction s; intros.
  inversion H.
  inversion_clear Hs.
  inversion_clear H0.
  simpl; elim_comp; trivial.
  simpl; elim_comp_gt x a; auto.
  apply Sort_Inf_In with l; trivial.
  Qed.

  Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
  Proof.
  simple induction s.
  intros; inversion H.
  intros a l Hrec x.
  simpl.
  case (X.compare x a); intros; try discriminate; auto.
  Qed.

  Lemma add_Inf :
   forall (s : t) (x a : elt), Inf a s -> X.lt a x -> Inf a (add x s).
  Proof.
  simple induction s.  
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition; inversion H0;
   intuition.
  Qed.
  Hint Resolve add_Inf.
  
  Lemma add_sort : forall (s : t) (Hs : Sort s) (x : elt), Sort (add x s).
  Proof.
  simple induction s.
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition; inversion_clear Hs;
   auto.
  Qed. 

  Lemma add_1 :
   forall (s : t) (Hs : Sort s) (x y : elt), X.eq x y -> In y (add x s).
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros; case (X.compare x a); inversion_clear Hs; auto.
  constructor; apply X.eq_trans with x; auto.
  Qed.

  Lemma add_2 :
   forall (s : t) (Hs : Sort s) (x y : elt), In y s -> In y (add x s).
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition.
  inversion_clear Hs; inversion_clear H0; auto.
  Qed.

  Lemma add_3 :
   forall (s : t) (Hs : Sort s) (x y : elt),
   ~ X.eq x y -> In y (add x s) -> In y s.
  Proof.
  simple induction s. 
  simpl; inversion_clear 3; auto; order.
  simpl; intros a l Hrec Hs x y; case (X.compare x a); intros;
   inversion_clear H0; inversion_clear Hs; auto.
  order.
  constructor 2; apply Hrec with x; auto.
  Qed.

  Lemma remove_Inf :
   forall (s : t) (Hs : Sort s) (x a : elt), Inf a s -> Inf a (remove x s).
  Proof.
  simple induction s.  
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition; inversion_clear H0; auto.
  inversion_clear Hs; apply Inf_lt with a; auto.
  Qed.
  Hint Resolve remove_Inf.

  Lemma remove_sort :
   forall (s : t) (Hs : Sort s) (x : elt), Sort (remove x s).
  Proof.
  simple induction s.
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition; inversion_clear Hs; auto.
  Qed. 

  Lemma remove_1 :
   forall (s : t) (Hs : Sort s) (x y : elt), X.eq x y -> ~ In y (remove x s).
  Proof.
  simple induction s. 
  simpl; red; intros; inversion H0.
  simpl; intros; case (X.compare x a); intuition; inversion_clear Hs. 
  inversion_clear H1.
  order.
  generalize (Sort_Inf_In H2 H3 H4); order.
  generalize (Sort_Inf_In H2 H3 H1); order.
  inversion_clear H1.
  order.
  apply (H H2 _ _ H0 H4).
  Qed.

  Lemma remove_2 :
   forall (s : t) (Hs : Sort s) (x y : elt),
   ~ X.eq x y -> In y s -> In y (remove x s).
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros; case (X.compare x a); intuition; inversion_clear Hs;
   inversion_clear H1; auto. 
  destruct H0; apply X.eq_trans with a; auto.
  Qed.

  Lemma remove_3 :
   forall (s : t) (Hs : Sort s) (x y : elt), In y (remove x s) -> In y s.
  Proof.
  simple induction s. 
  simpl; intuition.
  simpl; intros a l Hrec Hs x y; case (X.compare x a); intuition.
  inversion_clear Hs; inversion_clear H; auto.
  constructor 2; apply Hrec with x; auto.
  Qed.
  
  Lemma singleton_sort : forall x : elt, Sort (singleton x).
  Proof.
  unfold singleton; simpl; auto.
  Qed.

  Lemma singleton_1 : forall x y : elt, In y (singleton x) -> X.eq x y.
  Proof.
  unfold singleton; simpl; intuition.
  inversion_clear H; auto; inversion H0.
  Qed. 

  Lemma singleton_2 : forall x y : elt, X.eq x y -> In y (singleton x).
  Proof.
  unfold singleton; simpl; auto.
  Qed. 

  Ltac DoubleInd :=
    simple induction s;
     [ simpl; auto; try solve [ intros; inversion H ]
     | intros x l Hrec; simple induction s';
        [ simpl; auto; try solve [ intros; inversion H ]
        | intros x' l' Hrec' Hs Hs'; inversion Hs; inversion Hs'; subst;
           simpl ] ].

  Lemma union_Inf :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (a : elt),
   Inf a s -> Inf a s' -> Inf a (union s s').
  Proof.
  DoubleInd.
  intros i His His'; inversion_clear His; inversion_clear His'.
  case (X.compare x x'); auto.
  Qed.
  Hint Resolve union_Inf.
 
  Lemma union_sort :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'), Sort (union s s').
  Proof.
  DoubleInd; case (X.compare x x'); intuition; constructor; auto.
  apply Inf_eq with x'; trivial; apply union_Inf; trivial; apply Inf_eq with x; auto.
  change (Inf x' (union (x :: l) l')); auto.
  Qed.  
  
  Lemma union_1 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x (union s s') -> In x s \/ In x s'.
  Proof.
  DoubleInd; case (X.compare x x'); intuition; inversion_clear H; intuition.
  elim (Hrec (x' :: l') H1 Hs' x0); intuition.
  elim (Hrec l' H1 H5 x0); intuition.
  elim (H0 x0); intuition.
  Qed.

  Lemma union_2 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x s -> In x (union s s').
  Proof.
  DoubleInd. 
  intros i Hi; case (X.compare x x'); intuition; inversion_clear Hi; auto.
  Qed.

  Lemma union_3 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x s' -> In x (union s s').
  Proof.
  DoubleInd. 
  intros i Hi; case (X.compare x x'); inversion_clear Hi; intuition.
  constructor; apply X.eq_trans with x'; auto.  
  Qed.
    
  Lemma inter_Inf :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (a : elt),
   Inf a s -> Inf a s' -> Inf a (inter s s').
  Proof.
  DoubleInd.
  intros i His His'; inversion His; inversion His'; subst.
  case (X.compare x x'); intuition. 
  apply Inf_lt with x; auto.
  apply H3; auto.
  apply Inf_lt with x'; auto.
  Qed.
  Hint Resolve inter_Inf. 

  Lemma inter_sort :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'), Sort (inter s s').
  Proof.
  DoubleInd; case (X.compare x x'); auto.
  constructor; auto.
  apply Inf_eq with x'; trivial; apply inter_Inf; trivial; apply Inf_eq with x; auto.
  Qed.  
  
  Lemma inter_1 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x (inter s s') -> In x s.
  Proof.
  DoubleInd; case (X.compare x x'); intuition.
  constructor 2; apply Hrec with (x'::l'); auto.
  inversion_clear H; auto.
  constructor 2; apply Hrec with l'; auto.
  Qed.

  Lemma inter_2 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x (inter s s') -> In x s'.
  Proof.
  DoubleInd; case (X.compare x x'); intuition; inversion_clear H.
  constructor 1; apply X.eq_trans with x; auto.
  constructor 2; auto.
  Qed.

  Lemma inter_3 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x s -> In x s' -> In x (inter s s').
  Proof.
  DoubleInd.
  intros i His His'; elim (X.compare x x'); intuition.

  inversion_clear His; auto.
  generalize (Sort_Inf_In Hs' (cons_leA _ _ _ _ l0) His'); order.

  inversion_clear His; auto; inversion_clear His'; auto.
  constructor; apply X.eq_trans with x'; auto.

  change (In i (inter (x :: l) l')). 
  inversion_clear His'; auto.
  generalize (Sort_Inf_In Hs (cons_leA _ _ _ _ l0) His); order.
  Qed.

  Lemma diff_Inf :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (a : elt),
   Inf a s -> Inf a s' -> Inf a (diff s s').
  Proof.
  DoubleInd.
  intros i His His'; inversion His; inversion His'.
  case (X.compare x x'); intuition.
  apply Hrec; trivial.
  apply Inf_lt with x; auto.
  apply Inf_lt with x'; auto.
  apply H10; trivial.
  apply Inf_lt with x'; auto.
  Qed.
  Hint Resolve diff_Inf. 

  Lemma diff_sort :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'), Sort (diff s s').
  Proof.
  DoubleInd; case (X.compare x x'); auto.
  Qed.  
  
  Lemma diff_1 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x (diff s s') -> In x s.
  Proof.
  DoubleInd; case (X.compare x x'); intuition.
  inversion_clear H; auto.
  constructor 2; apply Hrec with (x'::l'); auto.
  constructor 2; apply Hrec with l'; auto.
  Qed.

  Lemma diff_2 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x (diff s s') -> ~ In x s'.
  Proof.
  DoubleInd.
  intros; intro Abs; inversion Abs. 
  case (X.compare x x'); intuition.

  inversion_clear H.
  generalize (Sort_Inf_In Hs' (cons_leA _ _ _ _ l0) H3); order.
  apply Hrec with (x'::l') x0; auto.
  
  inversion_clear H3.
  generalize (Sort_Inf_In H1 H2 (diff_1 H1 H5 H)); order.
  apply Hrec with l' x0; auto.
  
  inversion_clear H3. 
  generalize (Sort_Inf_In Hs (cons_leA _ _ _ _ l0) (diff_1 Hs H5 H)); order.
  apply H0 with x0; auto.
  Qed.

  Lemma diff_3 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s') (x : elt),
   In x s -> ~ In x s' -> In x (diff s s').
  Proof.
  DoubleInd.
  intros i His His'; elim (X.compare x x'); intuition; inversion_clear His; auto.
  elim His'; constructor; apply X.eq_trans with x; auto.
  Qed.  

  Lemma equal_1 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'),
   Equal s s' -> equal s s' = true.
  Proof.
  simple induction s; unfold Equal.
  intro s'; case s'; auto.
  simpl; intuition.
  elim (H e); intros; assert (A : In e nil); auto; inversion A.
  intros x l Hrec s'.
  case s'.
  intros; elim (H x); intros; assert (A : In x nil); auto; inversion A.
  intros x' l' Hs Hs'; inversion Hs; inversion Hs'; subst.
  simpl; case (X.compare x); intros; auto.

  elim (H x); intros.
  assert (A : In x (x' :: l')); auto; inversion_clear A.
  order.
  generalize (Sort_Inf_In H5 H6 H4); order.
  
  apply Hrec; intuition; elim (H a); intros.
  assert (A : In a (x' :: l')); auto; inversion_clear A; auto.
  generalize (Sort_Inf_In H1 H2 H0); order.
  assert (A : In a (x :: l)); auto; inversion_clear A; auto.
  generalize (Sort_Inf_In H5 H6 H0); order.

  elim (H x'); intros.
  assert (A : In x' (x :: l)); auto; inversion_clear A.
  order.
  generalize (Sort_Inf_In H1 H2 H4); order.
  Qed.

  Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'.
  Proof.
  simple induction s; unfold Equal.
  intro s'; case s'; intros.
  intuition.
  simpl in H; discriminate H.
  intros x l Hrec s'.
  case s'.
  intros; simpl in H; discriminate.
  intros x' l'; simpl; case (X.compare x); intros; auto; try discriminate.
  elim (Hrec l' H a); intuition; inversion_clear H2; auto.
  constructor; apply X.eq_trans with x; auto.
  constructor; apply X.eq_trans with x'; auto.
  Qed.  
  
  Lemma subset_1 :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'),
   Subset s s' -> subset s s' = true.
  Proof.
  intros s s'; generalize s' s; clear s s'.
  simple induction s'; unfold Subset.
  intro s; case s; auto.
  intros; elim (H e); intros; assert (A : In e nil); auto; inversion A. 
  intros x' l' Hrec s; case s.
  simpl; auto.
  intros x l Hs Hs'; inversion Hs; inversion Hs'; subst.
  simpl; case (X.compare x); intros; auto.

  assert (A : In x (x' :: l')); auto; inversion_clear A.
  order.
  generalize (Sort_Inf_In H5 H6 H0); order.
  
  apply Hrec; intuition.
  assert (A : In a (x' :: l')); auto; inversion_clear A; auto.
  generalize (Sort_Inf_In H1 H2 H0); order.

  apply Hrec; intuition.
  assert (A : In a (x' :: l')); auto; inversion_clear A; auto.
  inversion_clear H0. 
  order.
  generalize (Sort_Inf_In H1 H2 H4); order.
  Qed.

  Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'.
  Proof.
  intros s s'; generalize s' s; clear s s'.
  simple induction s'; unfold Subset.
  intro s; case s; auto.
  simpl; intros; discriminate H.
  intros x' l' Hrec s; case s.
  intros; inversion H0.
  intros x l; simpl; case (X.compare x); intros; auto.
  discriminate H.  
  inversion_clear H0.
  constructor; apply X.eq_trans with x; auto.
  constructor 2; apply Hrec with l; auto.
  constructor 2; apply Hrec with (x::l); auto.
  Qed.  
  
  Lemma empty_sort : Sort empty.
  Proof.
  unfold empty; constructor.
  Qed.

  Lemma empty_1 : Empty empty.
  Proof.
  unfold Empty, empty; intuition; inversion H.
  Qed. 

  Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
  Proof.
  unfold Empty; intro s; case s; simpl; intuition.
  elim (H e); auto.
  Qed.
  
  Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s. 
  Proof.
  unfold Empty; intro s; case s; simpl; intuition;
   inversion H0.
  Qed.

  Lemma elements_1 : forall (s : t) (x : elt), In x s -> In x (elements s).
  Proof.
  unfold elements; auto.
  Qed.

  Lemma elements_2 : forall (s : t) (x : elt), In x (elements s) -> In x s.
  Proof. 
  unfold elements; auto.
  Qed.
 
  Lemma elements_3 : forall (s : t) (Hs : Sort s), Sort (elements s).  
  Proof. 
  unfold elements; auto.
  Qed.

  Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s. 
  Proof.
  intro s; case s; simpl; intros; inversion H; auto.
  Qed.  

  Lemma min_elt_2 :
   forall (s : t) (Hs : Sort s) (x y : elt),
   min_elt s = Some x -> In y s -> ~ X.lt y x. 
  Proof.
  simple induction s; simpl.
  intros; inversion H.
  intros a l; case l; intros; inversion H0; inversion_clear H1; subst. 
  order.
  inversion H2.
  order.
  inversion_clear Hs.
  inversion_clear H3.
  generalize (H H1 e y (refl_equal (Some e)) H2); order.
  Qed. 

  Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s.
  Proof.
  unfold Empty; intro s; case s; simpl; intuition;
   inversion H; inversion H0.
  Qed.

  Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s. 
  Proof. 
  simple induction s; simpl.
  intros; inversion H.
  intros x l; case l; simpl.
  intuition.
  inversion H0; auto.
  intros.
  constructor 2; apply (H _ H0).
  Qed.
 
  Lemma max_elt_2 :
   forall (s : t) (Hs : Sort s) (x y : elt),
   max_elt s = Some x -> In y s -> ~ X.lt x y. 
  Proof.
  simple induction s; simpl.
  intros; inversion H.
  intros x l; case l; simpl.
  intuition.
  inversion H0; subst.
  inversion_clear H1.
  order.
  inversion H3.
  intros; inversion_clear Hs; inversion_clear H3; inversion_clear H1.
  assert (In e (e::l0)) by auto.
  generalize (H H2 x0 e H0 H1); order.
  generalize (H H2 x0 y H0 H3); order.
  Qed. 

  Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s.
  Proof.
  unfold Empty; simple induction s; simpl.
  red; intros; inversion H0.
  intros x l; case l; simpl; intros.
  inversion H0.
  elim (H H0 e); auto.
  Qed.

  Definition choose_1 :
    forall (s : t) (x : elt), choose s = Some x -> In x s := min_elt_1.

  Definition choose_2 : forall s : t, choose s = None -> Empty s := min_elt_3.

  Lemma fold_1 :
   forall (s : t) (Hs : Sort s) (A : Set) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof.
  induction s.
  simpl; trivial.
  intros.
  inversion_clear Hs.
  simpl; auto.
  Qed.

  Lemma cardinal_1 :
   forall (s : t) (Hs : Sort s),
   cardinal s = length (elements s).
  Proof.
  auto.
  Qed.

  Lemma filter_Inf :
   forall (s : t) (Hs : Sort s) (x : elt) (f : elt -> bool),
   Inf x s -> Inf x (filter f s).
  Proof.
  simple induction s; simpl.
  intuition.  
  intros x l Hrec Hs a f Ha; inversion_clear Hs; inversion_clear Ha.
  case (f x). 
  constructor; auto.
  apply Hrec; auto.
  apply Inf_lt with x; auto.
  Qed.

  Lemma filter_sort :
   forall (s : t) (Hs : Sort s) (f : elt -> bool), Sort (filter f s).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  case (f x); auto.
  constructor; auto.
  apply filter_Inf; auto. 
  Qed.

  Lemma filter_1 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool X.eq f -> In x (filter f s) -> In x s.
  Proof.
  simple induction s; simpl.
  intros; inversion H0.
  intros x l Hrec a f Hf.
  case (f x); simpl.
  inversion_clear 1.
  constructor; auto.
  constructor 2; apply (Hrec a f Hf); trivial.
  constructor 2; apply (Hrec a f Hf); trivial.
  Qed.

   Lemma filter_2 :
    forall (s : t) (x : elt) (f : elt -> bool),
    compat_bool X.eq f -> In x (filter f s) -> f x = true.   
   Proof.
  simple induction s; simpl.
  intros; inversion H0.
  intros x l Hrec a f Hf.
  generalize (Hf x); case (f x); simpl; auto.
  inversion_clear 2; auto.
  symmetry; auto.
  Qed.
 
  Lemma filter_3 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool X.eq f -> In x s -> f x = true -> In x (filter f s).     
  Proof.
  simple induction s; simpl.
  intros; inversion H0.
  intros x l Hrec a f Hf.
  generalize (Hf x); case (f x); simpl.
  inversion_clear 2; auto.
  inversion_clear 2; auto.
  rewrite <- (H a (X.eq_sym H1)); intros; discriminate.
  Qed.

  Lemma for_all_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   For_all (fun x => f x = true) s -> for_all f s = true.
  Proof. 
  simple induction s; simpl; auto; unfold For_all.
  intros x l Hrec f Hf. 
  generalize (Hf x); case (f x); simpl.
  auto.
  intros; rewrite (H x); auto.
  Qed.

  Lemma for_all_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   for_all f s = true -> For_all (fun x => f x = true) s.
  Proof. 
  simple induction s; simpl; auto; unfold For_all.
  intros; inversion H1.
  intros x l Hrec f Hf. 
  intros A a; intros. 
  assert (f x = true).
   generalize A; case (f x); auto.
  rewrite H0 in A; simpl in A.
  inversion_clear H; auto.
  rewrite (Hf a x); auto.
  Qed.

  Lemma exists_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
  Proof.
  simple induction s; simpl; auto; unfold Exists.
  intros.
  elim H0; intuition. 
  inversion H2.
  intros x l Hrec f Hf. 
  generalize (Hf x); case (f x); simpl.
  auto.
  destruct 2 as [a (A1,A2)].
  inversion_clear A1.
  rewrite <- (H a (X.eq_sym H0)) in A2; discriminate.
  apply Hrec; auto.
  exists a; auto.
  Qed.

  Lemma exists_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
  Proof. 
  simple induction s; simpl; auto; unfold Exists.
  intros; discriminate.
  intros x l Hrec f Hf.
  case_eq (f x); intros.
  exists x; auto.
  destruct (Hrec f Hf H0) as [a (A1,A2)].
  exists a; auto.
  Qed.

  Lemma partition_Inf_1 :
   forall (s : t) (Hs : Sort s) (f : elt -> bool) (x : elt),
   Inf x s -> Inf x (fst (partition f s)).
  Proof.
  simple induction s; simpl.
  intuition.  
  intros x l Hrec Hs f a Ha; inversion_clear Hs; inversion_clear Ha.
  generalize (Hrec H f a).
  case (f x); case (partition f l); simpl.
  auto.
  intros; apply H2; apply Inf_lt with x; auto.
  Qed.

  Lemma partition_Inf_2 :
   forall (s : t) (Hs : Sort s) (f : elt -> bool) (x : elt),
   Inf x s -> Inf x (snd (partition f s)).
  Proof.
  simple induction s; simpl.
  intuition.  
  intros x l Hrec Hs f a Ha; inversion_clear Hs; inversion_clear Ha.
  generalize (Hrec H f a).
  case (f x); case (partition f l); simpl.
  intros; apply H2; apply Inf_lt with x; auto.
  auto.
  Qed.

  Lemma partition_sort_1 :
   forall (s : t) (Hs : Sort s) (f : elt -> bool), Sort (fst (partition f s)).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  generalize (Hrec H f); generalize (partition_Inf_1 H f).
  case (f x); case (partition f l); simpl; auto.
  Qed.
  
  Lemma partition_sort_2 :
   forall (s : t) (Hs : Sort s) (f : elt -> bool), Sort (snd (partition f s)).
  Proof.
  simple induction s; simpl.
  auto.
  intros x l Hrec Hs f; inversion_clear Hs.
  generalize (Hrec H f); generalize (partition_Inf_2 H f).
  case (f x); case (partition f l); simpl; auto.
  Qed.

  Lemma partition_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f -> Equal (fst (partition f s)) (filter f s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  split; auto.
  intros x l Hrec f Hf.
  generalize (Hrec f Hf); clear Hrec.
  destruct (partition f l) as [s1 s2]; simpl; intros.
  case (f x); simpl; auto.
  split; inversion_clear 1; auto.
  constructor 2; rewrite <- H; auto.
  constructor 2; rewrite H; auto.
  Qed.
   
  Lemma partition_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool X.eq f ->
   Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  split; auto.
  intros x l Hrec f Hf. 
  generalize (Hrec f Hf); clear Hrec.
  destruct (partition f l) as [s1 s2]; simpl; intros.
  case (f x); simpl; auto.
  split; inversion_clear 1; auto.
  constructor 2; rewrite <- H; auto.
  constructor 2; rewrite H; auto.
  Qed.
 
  Definition eq : t -> t -> Prop := Equal.

  Lemma eq_refl : forall s : t, eq s s. 
  Proof. 
  unfold eq, Equal; intuition.
  Qed.

  Lemma eq_sym : forall s s' : t, eq s s' -> eq s' s.
  Proof. 
  unfold eq, Equal; intros; destruct (H a); intuition.
  Qed.

  Lemma eq_trans : forall s s' s'' : t, eq s s' -> eq s' s'' -> eq s s''.
  Proof. 
  unfold eq, Equal; intros; destruct (H a); destruct (H0 a); intuition.
  Qed.

  Inductive lt : t -> t -> Prop :=
    | lt_nil : forall (x : elt) (s : t), lt nil (x :: s)
    | lt_cons_lt :
        forall (x y : elt) (s s' : t), X.lt x y -> lt (x :: s) (y :: s')
    | lt_cons_eq :
        forall (x y : elt) (s s' : t),
        X.eq x y -> lt s s' -> lt (x :: s) (y :: s').
  Hint Constructors lt.
   
  Lemma lt_trans : forall s s' s'' : t, lt s s' -> lt s' s'' -> lt s s''.
  Proof. 
  intros s s' s'' H; generalize s''; clear s''; elim H.
  intros x l s'' H'; inversion_clear H'; auto.
  intros x x' l l' E s'' H'; inversion_clear H'; auto. 
  constructor; apply X.lt_trans with x'; auto.
  constructor; apply lt_eq with x'; auto.
  intros.
  inversion_clear H3.
  constructor; apply eq_lt with y; auto.
  constructor 3; auto; apply X.eq_trans with y; auto.  
  Qed. 

  Lemma lt_not_eq :
   forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'), lt s s' -> ~ eq s s'.
  Proof. 
  unfold eq, Equal. 
  intros s s' Hs Hs' H; generalize Hs Hs'; clear Hs Hs'; elim H; intros; intro.
  elim (H0 x); intros.
  assert (X : In x nil); auto; inversion X.
  inversion_clear Hs; inversion_clear Hs'.
  elim (H1 x); intros. 
  assert (X : In x (y :: s'0)); auto; inversion_clear X.
  order.
  generalize (Sort_Inf_In H4 H5 H8); order.
  inversion_clear Hs; inversion_clear Hs'.
  elim H2; auto; split; intros.
  generalize (Sort_Inf_In H4 H5 H8); intros.
  elim (H3 a); intros.
  assert (X : In a (y :: s'0)); auto; inversion_clear X; auto.
  order.
  generalize (Sort_Inf_In H6 H7 H8); intros.
  elim (H3 a); intros.
  assert (X : In a (x :: s0)); auto; inversion_clear X; auto.
  order.
  Qed.

  Definition compare :
    forall (s s' : t) (Hs : Sort s) (Hs' : Sort s'), Compare lt eq s s'.
  Proof.
  simple induction s.
  intros; case s'. 
  constructor 2; apply eq_refl. 
  constructor 1; auto.
  intros a l Hrec s'; case s'.
  constructor 3; auto.
  intros a' l' Hs Hs'.
  case (X.compare a a'); [ constructor 1 | idtac | constructor 3 ]; auto.
  elim (Hrec l');
   [ constructor 1
   | constructor 2
   | constructor 3
   | inversion Hs
   | inversion Hs' ]; auto.
  generalize e; unfold eq, Equal; intuition; inversion_clear H.
  constructor; apply X.eq_trans with a; auto.
  destruct (e1 a0); auto.
  constructor; apply X.eq_trans with a'; auto.
  destruct (e1 a0); auto.
  Defined.

End Raw.

(** * Encapsulation

   Now, in order to really provide a functor implementing [S], we 
   need to encapsulate everything into a type of strictly ordered lists. *)

Module Make (X: OrderedType) <: S with Module E := X.

 Module E := X.
 Module Raw := Raw X. 

 Record slist : Set :=  {this :> Raw.t; sorted : sort X.lt this}.
 Definition t := slist. 
 Definition elt := X.t.
 
 Definition In (x : elt) (s : t) := InA X.eq x s.(this).
 Definition Equal s s' := forall a : elt, In a s <-> In a s'.
 Definition Subset s s' := forall a : elt, In a s -> In a s'.
 Definition Empty s := forall a : elt, ~ In a s.
 Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
 Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
  
 Definition In_1 (s : t) := Raw.MX.In_eq (l:=s.(this)).
 
 Definition mem (x : elt) (s : t) := Raw.mem x s.
 Definition mem_1 (s : t) := Raw.mem_1 (sorted s). 
 Definition mem_2 (s : t) := Raw.mem_2 (s:=s).

 Definition add x s := Build_slist (Raw.add_sort (sorted s) x).
 Definition add_1 (s : t) := Raw.add_1 (sorted s).
 Definition add_2 (s : t) := Raw.add_2 (sorted s).
 Definition add_3 (s : t) := Raw.add_3 (sorted s).

 Definition remove x s := Build_slist (Raw.remove_sort (sorted s) x).
 Definition remove_1 (s : t) := Raw.remove_1 (sorted s).
 Definition remove_2 (s : t) := Raw.remove_2 (sorted s).
 Definition remove_3 (s : t) := Raw.remove_3 (sorted s).
 
 Definition singleton x := Build_slist (Raw.singleton_sort x).
 Definition singleton_1 := Raw.singleton_1.
 Definition singleton_2 := Raw.singleton_2.
  
 Definition union (s s' : t) :=
   Build_slist (Raw.union_sort (sorted s) (sorted s')). 
 Definition union_1 (s s' : t) := Raw.union_1 (sorted s) (sorted s').
 Definition union_2 (s s' : t) := Raw.union_2 (sorted s) (sorted s').
 Definition union_3 (s s' : t) := Raw.union_3 (sorted s) (sorted s').

 Definition inter (s s' : t) :=
   Build_slist (Raw.inter_sort (sorted s) (sorted s')). 
 Definition inter_1 (s s' : t) := Raw.inter_1 (sorted s) (sorted s').
 Definition inter_2 (s s' : t) := Raw.inter_2 (sorted s) (sorted s').
 Definition inter_3 (s s' : t) := Raw.inter_3 (sorted s) (sorted s').
 
 Definition diff (s s' : t) :=
   Build_slist (Raw.diff_sort (sorted s) (sorted s')). 
 Definition diff_1 (s s' : t) := Raw.diff_1 (sorted s) (sorted s').
 Definition diff_2 (s s' : t) := Raw.diff_2 (sorted s) (sorted s').
 Definition diff_3 (s s' : t) := Raw.diff_3 (sorted s) (sorted s').
 
 Definition equal (s s' : t) := Raw.equal s s'. 
 Definition equal_1 (s s' : t) := Raw.equal_1 (sorted s) (sorted s').  
 Definition equal_2 (s s' : t) := Raw.equal_2 (s:=s) (s':=s').
 
 Definition subset (s s' : t) := Raw.subset s s'.
 Definition subset_1 (s s' : t) := Raw.subset_1 (sorted s) (sorted s').  
 Definition subset_2 (s s' : t) := Raw.subset_2 (s:=s) (s':=s').

 Definition empty := Build_slist Raw.empty_sort.
 Definition empty_1 := Raw.empty_1.
 
 Definition is_empty (s : t) := Raw.is_empty s.
 Definition is_empty_1 (s : t) := Raw.is_empty_1 (s:=s).
 Definition is_empty_2 (s : t) := Raw.is_empty_2 (s:=s).

 Definition elements (s : t) := Raw.elements s.
 Definition elements_1 (s : t) := Raw.elements_1 (s:=s).
 Definition elements_2 (s : t) := Raw.elements_2 (s:=s).
 Definition elements_3 (s : t) := Raw.elements_3 (sorted s).
 
 Definition min_elt (s : t) := Raw.min_elt s.
 Definition min_elt_1 (s : t) := Raw.min_elt_1 (s:=s).
 Definition min_elt_2 (s : t) := Raw.min_elt_2 (sorted s).
 Definition min_elt_3 (s : t) := Raw.min_elt_3 (s:=s).

 Definition max_elt (s : t) := Raw.max_elt s.
 Definition max_elt_1 (s : t) := Raw.max_elt_1 (s:=s).
 Definition max_elt_2 (s : t) := Raw.max_elt_2 (sorted s).
 Definition max_elt_3 (s : t) := Raw.max_elt_3 (s:=s).
  
 Definition choose := min_elt.
 Definition choose_1 := min_elt_1.
 Definition choose_2 := min_elt_3.
 
 Definition fold (B : Set) (f : elt -> B -> B) (s : t) := Raw.fold (B:=B) f s. 
 Definition fold_1 (s : t) := Raw.fold_1 (sorted s). 
 
 Definition cardinal (s : t) := Raw.cardinal s.
 Definition cardinal_1 (s : t) := Raw.cardinal_1 (sorted s). 
 
 Definition filter (f : elt -> bool) (s : t) :=
   Build_slist (Raw.filter_sort (sorted s) f).
 Definition filter_1 (s : t) := Raw.filter_1 (s:=s).
 Definition filter_2 (s : t) := Raw.filter_2 (s:=s).
 Definition filter_3 (s : t) := Raw.filter_3 (s:=s).
 
 Definition for_all (f : elt -> bool) (s : t) := Raw.for_all f s.
 Definition for_all_1 (s : t) := Raw.for_all_1 (s:=s). 
 Definition for_all_2 (s : t) := Raw.for_all_2 (s:=s). 

 Definition exists_ (f : elt -> bool) (s : t) := Raw.exists_ f s.
 Definition exists_1 (s : t) := Raw.exists_1 (s:=s). 
 Definition exists_2 (s : t) := Raw.exists_2 (s:=s). 

 Definition partition (f : elt -> bool) (s : t) :=
   let p := Raw.partition f s in
   (Build_slist (this:=fst p) (Raw.partition_sort_1 (sorted s) f),
   Build_slist (this:=snd p) (Raw.partition_sort_2 (sorted s) f)).
 Definition partition_1 (s : t) := Raw.partition_1 s.
 Definition partition_2 (s : t) := Raw.partition_2 s. 

 Definition eq (s s' : t) := Raw.eq s s'.
 Definition eq_refl (s : t) := Raw.eq_refl s.
 Definition eq_sym (s s' : t) := Raw.eq_sym (s:=s) (s':=s').
 Definition eq_trans (s s' s'' : t) :=
   Raw.eq_trans (s:=s) (s':=s') (s'':=s'').
  
 Definition lt (s s' : t) := Raw.lt s s'.
 Definition lt_trans (s s' s'' : t) :=
   Raw.lt_trans (s:=s) (s':=s') (s'':=s'').
 Definition lt_not_eq (s s' : t) := Raw.lt_not_eq (sorted s) (sorted s').

 Definition compare : forall s s' : t, Compare lt eq s s'.
 Proof.
 intros; elim (Raw.compare (sorted s) (sorted s'));
  [ constructor 1 | constructor 2 | constructor 3 ]; 
  auto. 
 Defined.

End Make.