summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetCompat.v
blob: 6b3d86d398f13aec8959ddc6ac677b232f084119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(** * Compatibility functors between FSetInterface and MSetInterface. *)

Require Import FSetInterface FSetFacts MSetInterface MSetFacts.
Set Implicit Arguments.
Unset Strict Implicit.

(** * From new Weak Sets to old ones *)

Module Backport_WSets
 (E:DecidableType.DecidableType)
 (M:MSetInterface.WSets with Definition E.t := E.t
                        with Definition E.eq := E.eq)
 <: FSetInterface.WSfun E.

 Definition elt := E.t.
 Definition t := M.t.

 Implicit Type s : t.
 Implicit Type x y : elt.
 Implicit Type f : elt -> bool.

 Definition In : elt -> t -> Prop := M.In.
 Definition Equal s s' := forall a : elt, In a s <-> In a s'.
 Definition Subset s s' := forall a : elt, In a s -> In a s'.
 Definition Empty s := forall a : elt, ~ In a s.
 Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
 Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
 Definition empty : t := M.empty.
 Definition is_empty : t -> bool := M.is_empty.
 Definition mem : elt -> t -> bool := M.mem.
 Definition add : elt -> t -> t := M.add.
 Definition singleton : elt -> t := M.singleton.
 Definition remove : elt -> t -> t := M.remove.
 Definition union : t -> t -> t := M.union.
 Definition inter : t -> t -> t := M.inter.
 Definition diff : t -> t -> t := M.diff.
 Definition eq : t -> t -> Prop := M.eq.
 Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
 Definition equal : t -> t -> bool := M.equal.
 Definition subset : t -> t -> bool := M.subset.
 Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
 Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
 Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
 Definition filter : (elt -> bool) -> t -> t := M.filter.
 Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
 Definition cardinal : t -> nat := M.cardinal.
 Definition elements : t -> list elt := M.elements.
 Definition choose : t -> option elt := M.choose.

 Module MF := MSetFacts.WFacts M.

 Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s
  := MF.In_1.
 Definition eq_refl : forall s, eq s s
  := @Equivalence_Reflexive _ _ M.eq_equiv.
 Definition eq_sym : forall s s', eq s s' -> eq s' s
  := @Equivalence_Symmetric _ _ M.eq_equiv.
 Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s''
  := @Equivalence_Transitive _ _ M.eq_equiv.
 Definition mem_1 : forall s x, In x s -> mem x s = true
  := MF.mem_1.
 Definition mem_2 : forall s x, mem x s = true -> In x s
  := MF.mem_2.
 Definition equal_1 : forall s s', Equal s s' -> equal s s' = true
  := MF.equal_1.
 Definition equal_2 : forall s s', equal s s' = true -> Equal s s'
  := MF.equal_2.
 Definition subset_1 : forall s s', Subset s s' -> subset s s' = true
  := MF.subset_1.
 Definition subset_2 : forall s s', subset s s' = true -> Subset s s'
  := MF.subset_2.
 Definition empty_1 : Empty empty := MF.empty_1.
 Definition is_empty_1 : forall s, Empty s -> is_empty s = true
  := MF.is_empty_1.
 Definition is_empty_2 : forall s, is_empty s = true -> Empty s
  := MF.is_empty_2.
 Definition add_1 : forall s x y, E.eq x y -> In y (add x s)
  := MF.add_1.
 Definition add_2 : forall s x y, In y s -> In y (add x s)
  := MF.add_2.
 Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s
  := MF.add_3.
 Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s)
  := MF.remove_1.
 Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s)
  := MF.remove_2.
 Definition remove_3 : forall s x y, In y (remove x s) -> In y s
  := MF.remove_3.
 Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s'
  := MF.union_1.
 Definition union_2 : forall s s' x, In x s -> In x (union s s')
  := MF.union_2.
 Definition union_3 : forall s s' x, In x s' -> In x (union s s')
  := MF.union_3.
 Definition inter_1 : forall s s' x, In x (inter s s') -> In x s
  := MF.inter_1.
 Definition inter_2 : forall s s' x, In x (inter s s') -> In x s'
  := MF.inter_2.
 Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s')
  := MF.inter_3.
 Definition diff_1 : forall s s' x, In x (diff s s') -> In x s
  := MF.diff_1.
 Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s'
  := MF.diff_2.
 Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s')
  := MF.diff_3.
 Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y
  := MF.singleton_1.
 Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x)
  := MF.singleton_2.
 Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (fun a e => f e a) (elements s) i
  := MF.fold_1.
 Definition cardinal_1 : forall s, cardinal s = length (elements s)
  := MF.cardinal_1.
 Definition filter_1 : forall s x f, compat_bool E.eq f ->
  In x (filter f s) -> In x s
  := MF.filter_1.
 Definition filter_2 : forall s x f, compat_bool E.eq f ->
  In x (filter f s) -> f x = true
  := MF.filter_2.
 Definition filter_3 : forall s x f, compat_bool E.eq f ->
  In x s -> f x = true -> In x (filter f s)
  := MF.filter_3.
 Definition for_all_1 : forall s f, compat_bool E.eq f ->
  For_all (fun x => f x = true) s -> for_all f s = true
  := MF.for_all_1.
 Definition for_all_2 : forall s f, compat_bool E.eq f ->
  for_all f s = true -> For_all (fun x => f x = true) s
  := MF.for_all_2.
 Definition exists_1 : forall s f, compat_bool E.eq f ->
  Exists (fun x => f x = true) s -> exists_ f s = true
  := MF.exists_1.
 Definition exists_2 : forall s f, compat_bool E.eq f ->
  exists_ f s = true -> Exists (fun x => f x = true) s
  := MF.exists_2.
 Definition partition_1 : forall s f, compat_bool E.eq f ->
  Equal (fst (partition f s)) (filter f s)
  := MF.partition_1.
 Definition partition_2 : forall s f, compat_bool E.eq f ->
  Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
  := MF.partition_2.
 Definition choose_1 : forall s x, choose s = Some x -> In x s
  := MF.choose_1.
 Definition choose_2 : forall s, choose s = None -> Empty s
  := MF.choose_2.
 Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s)
  := MF.elements_1.
 Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s
  := MF.elements_2.
 Definition elements_3w : forall s, NoDupA E.eq (elements s)
  := MF.elements_3w.

End Backport_WSets.


(** * From new Sets to new ones *)

Module Backport_Sets
 (E:OrderedType.OrderedType)
 (M:MSetInterface.Sets with Definition E.t := E.t
                       with Definition E.eq := E.eq
                       with Definition E.lt := E.lt)
 <: FSetInterface.S with Module E:=E.

  Include Backport_WSets E M.

  Implicit Type s : t.
  Implicit Type x y : elt.

  Definition lt : t -> t -> Prop := M.lt.
  Definition min_elt : t -> option elt := M.min_elt.
  Definition max_elt : t -> option elt := M.max_elt.
  Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s
   := M.min_elt_spec1.
  Definition min_elt_2 : forall s x y,
   min_elt s = Some x -> In y s -> ~ E.lt y x
   := M.min_elt_spec2.
  Definition min_elt_3 : forall s, min_elt s = None -> Empty s
   := M.min_elt_spec3.
  Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s
   := M.max_elt_spec1.
  Definition max_elt_2 : forall s x y,
   max_elt s = Some x -> In y s -> ~ E.lt x y
   := M.max_elt_spec2.
  Definition max_elt_3 : forall s, max_elt s = None -> Empty s
   := M.max_elt_spec3.
  Definition elements_3 : forall s, sort E.lt (elements s)
   := M.elements_spec2.
  Definition choose_3 : forall s s' x y,
   choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
   := M.choose_spec3.
  Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s''
   := @StrictOrder_Transitive _ _ M.lt_strorder.
  Lemma lt_not_eq : forall s s',  lt s s' -> ~ eq s s'.
  Proof.
   unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt.
   apply (StrictOrder_Irreflexive s'); auto.
  Qed.
  Definition compare : forall s s', Compare lt eq s s'.
  Proof.
   intros s s'; destruct (CompSpec2Type (M.compare_spec s s'));
    [ apply EQ | apply LT | apply GT ]; auto.
  Defined.

  Module E := E.

End Backport_Sets.


(** * From old Weak Sets to new ones. *)

Module Update_WSets
 (E:Equalities.DecidableType)
 (M:FSetInterface.WS with Definition E.t := E.t
                     with Definition E.eq := E.eq)
 <: MSetInterface.WSetsOn E.

 Definition elt := E.t.
 Definition t := M.t.

 Implicit Type s : t.
 Implicit Type x y : elt.
 Implicit Type f : elt -> bool.

 Definition In : elt -> t -> Prop := M.In.
 Definition Equal s s' := forall a : elt, In a s <-> In a s'.
 Definition Subset s s' := forall a : elt, In a s -> In a s'.
 Definition Empty s := forall a : elt, ~ In a s.
 Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
 Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
 Definition empty : t := M.empty.
 Definition is_empty : t -> bool := M.is_empty.
 Definition mem : elt -> t -> bool := M.mem.
 Definition add : elt -> t -> t := M.add.
 Definition singleton : elt -> t := M.singleton.
 Definition remove : elt -> t -> t := M.remove.
 Definition union : t -> t -> t := M.union.
 Definition inter : t -> t -> t := M.inter.
 Definition diff : t -> t -> t := M.diff.
 Definition eq : t -> t -> Prop := M.eq.
 Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
 Definition equal : t -> t -> bool := M.equal.
 Definition subset : t -> t -> bool := M.subset.
 Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
 Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
 Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
 Definition filter : (elt -> bool) -> t -> t := M.filter.
 Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
 Definition cardinal : t -> nat := M.cardinal.
 Definition elements : t -> list elt := M.elements.
 Definition choose : t -> option elt := M.choose.

 Module MF := FSetFacts.WFacts M.

 Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
 Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed.

 Instance eq_equiv : Equivalence eq := _.

 Section Spec.
  Variable s s': t.
  Variable x y : elt.

  Lemma mem_spec : mem x s = true <-> In x s.
  Proof. intros; symmetry; apply MF.mem_iff. Qed.

  Lemma equal_spec : equal s s' = true <-> Equal s s'.
  Proof. intros; symmetry; apply MF.equal_iff. Qed.

  Lemma subset_spec : subset s s' = true <-> Subset s s'.
  Proof. intros; symmetry; apply MF.subset_iff. Qed.

  Definition empty_spec : Empty empty := M.empty_1.

  Lemma is_empty_spec : is_empty s = true <-> Empty s.
  Proof. intros; symmetry; apply MF.is_empty_iff. Qed.

  Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
  Proof. intros. rewrite MF.add_iff. intuition. Qed.

  Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
  Proof. intros. rewrite MF.remove_iff. intuition. Qed.

  Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
  Proof. intros; rewrite MF.singleton_iff. intuition. Qed.

  Definition union_spec : In x (union s s') <-> In x s \/ In x s'
   := @MF.union_iff s s' x.
  Definition inter_spec : In x (inter s s') <-> In x s /\ In x s'
   := @MF.inter_iff s s' x.
  Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s'
   := @MF.diff_iff s s' x.
  Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (flip f) (elements s) i
   := @M.fold_1 s.
  Definition cardinal_spec : cardinal s = length (elements s)
   := @M.cardinal_1 s.

  Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
  Proof. intros; symmetry; apply MF.elements_iff. Qed.

  Definition elements_spec2w : NoDupA E.eq (elements s)
   := @M.elements_3w s.
  Definition choose_spec1 : choose s = Some x -> In x s
   := @M.choose_1 s x.
  Definition choose_spec2 : choose s = None -> Empty s
   := @M.choose_2 s.
  Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f ->
   (In x (filter f s) <-> In x s /\ f x = true)
   := @MF.filter_iff s x.
  Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f ->
   Equal (fst (partition f s)) (filter f s)
   := @M.partition_1 s.
  Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f ->
   Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
   := @M.partition_2 s.

  Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f ->
    (for_all f s = true <-> For_all (fun x => f x = true) s).
  Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed.

  Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f ->
    (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Proof. intros; symmetry; apply MF.exists_iff; auto. Qed.

  End Spec.

End Update_WSets.


(** * From old Sets to new ones. *)

Module Update_Sets
 (E:Orders.OrderedType)
 (M:FSetInterface.S with Definition E.t := E.t
                    with Definition E.eq := E.eq
                    with Definition E.lt := E.lt)
 <: MSetInterface.Sets with Module E:=E.

  Include Update_WSets E M.

  Implicit Type s : t.
  Implicit Type x y : elt.

  Definition lt : t -> t -> Prop := M.lt.
  Definition min_elt : t -> option elt := M.min_elt.
  Definition max_elt : t -> option elt := M.max_elt.
  Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s
   := M.min_elt_1.
  Definition min_elt_spec2 : forall s x y,
   min_elt s = Some x -> In y s -> ~ E.lt y x
   := M.min_elt_2.
  Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s
   := M.min_elt_3.
  Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s
   := M.max_elt_1.
  Definition max_elt_spec2 : forall s x y,
   max_elt s = Some x -> In y s -> ~ E.lt x y
   := M.max_elt_2.
  Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s
   := M.max_elt_3.
  Definition elements_spec2 : forall s, sort E.lt (elements s)
   := M.elements_3.
  Definition choose_spec3 : forall s s' x y,
   choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
   := M.choose_3.

  Instance lt_strorder : StrictOrder lt.
  Proof.
   split.
   intros x Hx. apply (M.lt_not_eq Hx); auto with *.
   exact M.lt_trans.
  Qed.

  Instance lt_compat : Proper (eq==>eq==>iff) lt.
  Proof.
  apply proper_sym_impl_iff_2; auto with *.
  intros s s' Hs u u' Hu H.
  assert (H0 : lt s' u).
   destruct (M.compare s' u) as [H'|H'|H']; auto.
   elim (M.lt_not_eq H). transitivity s'; auto with *.
   elim (M.lt_not_eq (M.lt_trans H H')); auto.
  destruct (M.compare s' u') as [H'|H'|H']; auto.
  elim (M.lt_not_eq H).
   transitivity u'; auto with *. transitivity s'; auto with *.
  elim (M.lt_not_eq (M.lt_trans H' H0)); auto with *.
  Qed.

  Definition compare s s' :=
   match M.compare s s' with
    | EQ _ => Eq
    | LT _ => Lt
    | GT _ => Gt
   end.

  Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s').
  Proof. intros; unfold compare; destruct M.compare; auto. Qed.

  Module E := E.

End Update_Sets.