1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(** * Finite map library *)
(** This file proposes an implementation of the non-dependant interface
[FMapInterface.WS] using lists of pairs, unordered but without redundancy. *)
Require Import FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Module Raw (X:DecidableType).
Module Import PX := KeyDecidableType X.
Definition key := X.t.
Definition t (elt:Type) := list (X.t * elt).
Section Elt.
Variable elt : Type.
Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
Notation MapsTo := (MapsTo (elt:=elt)).
Notation In := (In (elt:=elt)).
Notation NoDupA := (NoDupA eqk).
(** * [empty] *)
Definition empty : t elt := nil.
Definition Empty m := forall (a : key)(e:elt), ~ MapsTo a e m.
Lemma empty_1 : Empty empty.
Proof.
unfold Empty,empty.
intros a e.
intro abs.
inversion abs.
Qed.
Hint Resolve empty_1.
Lemma empty_NoDup : NoDupA empty.
Proof.
unfold empty; auto.
Qed.
(** * [is_empty] *)
Definition is_empty (l : t elt) : bool := if l then true else false.
Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
Proof.
unfold Empty, PX.MapsTo.
intros m.
case m;auto.
intros p l inlist.
destruct p.
absurd (InA eqke (t0, e) ((t0, e) :: l));auto.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
intros m.
case m;auto.
intros p l abs.
inversion abs.
Qed.
(** * [mem] *)
Function mem (k : key) (s : t elt) {struct s} : bool :=
match s with
| nil => false
| (k',_) :: l => if X.eq_dec k k' then true else mem k l
end.
Lemma mem_1 : forall m (Hm:NoDupA m) x, In x m -> mem x m = true.
Proof.
intros m Hm x; generalize Hm; clear Hm.
functional induction (mem x m);intros NoDup belong1;trivial.
inversion belong1. inversion H.
inversion_clear NoDup.
inversion_clear belong1.
inversion_clear H1.
compute in H2; destruct H2.
contradiction.
apply IHb; auto.
exists x0; auto.
Qed.
Lemma mem_2 : forall m (Hm:NoDupA m) x, mem x m = true -> In x m.
Proof.
intros m Hm x; generalize Hm; clear Hm; unfold PX.In,PX.MapsTo.
functional induction (mem x m); intros NoDup hyp; try discriminate.
exists _x; auto.
inversion_clear NoDup.
destruct IHb; auto.
exists x0; auto.
Qed.
(** * [find] *)
Function find (k:key) (s: t elt) {struct s} : option elt :=
match s with
| nil => None
| (k',x)::s' => if X.eq_dec k k' then Some x else find k s'
end.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m x. unfold PX.MapsTo.
functional induction (find x m);simpl;intros e' eqfind; inversion eqfind; auto.
Qed.
Lemma find_1 : forall m (Hm:NoDupA m) x e,
MapsTo x e m -> find x m = Some e.
Proof.
intros m Hm x e; generalize Hm; clear Hm; unfold PX.MapsTo.
functional induction (find x m);simpl; subst; try clear H_eq_1.
inversion 2.
do 2 inversion_clear 1.
compute in H2; destruct H2; subst; trivial.
elim H; apply InA_eqk with (x,e); auto.
do 2 inversion_clear 1; auto.
compute in H2; destruct H2; elim _x; auto.
Qed.
(* Not part of the exported specifications, used later for [combine]. *)
Lemma find_eq : forall m (Hm:NoDupA m) x x',
X.eq x x' -> find x m = find x' m.
Proof.
induction m; simpl; auto; destruct a; intros.
inversion_clear Hm.
rewrite (IHm H1 x x'); auto.
destruct (X.eq_dec x t0); destruct (X.eq_dec x' t0); trivial.
elim n; apply X.eq_trans with x; auto.
elim n; apply X.eq_trans with x'; auto.
Qed.
(** * [add] *)
Function add (k : key) (x : elt) (s : t elt) {struct s} : t elt :=
match s with
| nil => (k,x) :: nil
| (k',y) :: l => if X.eq_dec k k' then (k,x)::l else (k',y)::add k x l
end.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
intros m x y e; generalize y; clear y; unfold PX.MapsTo.
functional induction (add x e m);simpl;auto.
Qed.
Lemma add_2 : forall m x y e e',
~ X.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
intros m x y e e'; generalize y e; clear y e; unfold PX.MapsTo.
functional induction (add x e' m);simpl;auto.
intros y' e'' eqky'; inversion_clear 1.
destruct H0; simpl in *.
elim eqky'; apply X.eq_trans with k'; auto.
auto.
intros y' e'' eqky'; inversion_clear 1; intuition.
Qed.
Lemma add_3 : forall m x y e e',
~ X.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
intros m x y e e'. generalize y e; clear y e; unfold PX.MapsTo.
functional induction (add x e' m);simpl;auto.
intros; apply (In_inv_3 H0); auto.
constructor 2; apply (In_inv_3 H0); auto.
inversion_clear 2; auto.
Qed.
Lemma add_3' : forall m x y e e',
~ X.eq x y -> InA eqk (y,e) (add x e' m) -> InA eqk (y,e) m.
Proof.
intros m x y e e'. generalize y e; clear y e.
functional induction (add x e' m);simpl;auto.
inversion_clear 2.
compute in H1; elim H; auto.
inversion H1.
constructor 2; inversion_clear H0; auto.
compute in H1; elim H; auto.
inversion_clear 2; auto.
Qed.
Lemma add_NoDup : forall m (Hm:NoDupA m) x e, NoDupA (add x e m).
Proof.
induction m.
simpl; constructor; auto; red; inversion 1.
intros.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); inversion_clear Hm; auto.
constructor; auto.
contradict H.
apply InA_eqk with (x,e); auto.
constructor; auto.
contradict H; apply add_3' with x e; auto.
Qed.
(* Not part of the exported specifications, used later for [combine]. *)
Lemma add_eq : forall m (Hm:NoDupA m) x a e,
X.eq x a -> find x (add a e m) = Some e.
Proof.
intros.
apply find_1; auto.
apply add_NoDup; auto.
apply add_1; auto.
Qed.
Lemma add_not_eq : forall m (Hm:NoDupA m) x a e,
~X.eq x a -> find x (add a e m) = find x m.
Proof.
intros.
case_eq (find x m); intros.
apply find_1; auto.
apply add_NoDup; auto.
apply add_2; auto.
apply find_2; auto.
case_eq (find x (add a e m)); intros; auto.
rewrite <- H0; symmetry.
apply find_1; auto.
apply add_3 with a e; auto.
apply find_2; auto.
Qed.
(** * [remove] *)
Function remove (k : key) (s : t elt) {struct s} : t elt :=
match s with
| nil => nil
| (k',x) :: l => if X.eq_dec k k' then l else (k',x) :: remove k l
end.
Lemma remove_1 : forall m (Hm:NoDupA m) x y, X.eq x y -> ~ In y (remove x m).
Proof.
intros m Hm x y; generalize Hm; clear Hm.
functional induction (remove x m);simpl;intros;auto.
red; inversion 1; inversion H1.
inversion_clear Hm.
subst.
contradict H0.
destruct H0 as (e,H2); unfold PX.MapsTo in H2.
apply InA_eqk with (y,e); auto.
compute; apply X.eq_trans with x; auto.
intro H2.
destruct H2 as (e,H2); inversion_clear H2.
compute in H0; destruct H0.
elim _x; apply X.eq_trans with y; auto.
inversion_clear Hm.
elim (IHt0 H2 H).
exists e; auto.
Qed.
Lemma remove_2 : forall m (Hm:NoDupA m) x y e,
~ X.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m Hm x y e; generalize Hm; clear Hm; unfold PX.MapsTo.
functional induction (remove x m);auto.
inversion_clear 3; auto.
compute in H1; destruct H1.
elim H; apply X.eq_trans with k'; auto.
inversion_clear 1; inversion_clear 2; auto.
Qed.
Lemma remove_3 : forall m (Hm:NoDupA m) x y e,
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m Hm x y e; generalize Hm; clear Hm; unfold PX.MapsTo.
functional induction (remove x m);auto.
do 2 inversion_clear 1; auto.
Qed.
Lemma remove_3' : forall m (Hm:NoDupA m) x y e,
InA eqk (y,e) (remove x m) -> InA eqk (y,e) m.
Proof.
intros m Hm x y e; generalize Hm; clear Hm; unfold PX.MapsTo.
functional induction (remove x m);auto.
do 2 inversion_clear 1; auto.
Qed.
Lemma remove_NoDup : forall m (Hm:NoDupA m) x, NoDupA (remove x m).
Proof.
induction m.
simpl; intuition.
intros.
inversion_clear Hm.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); auto.
constructor; auto.
contradict H; apply remove_3' with x; auto.
Qed.
(** * [elements] *)
Definition elements (m: t elt) := m.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eqke (x,e) (elements m).
Proof.
auto.
Qed.
Lemma elements_2 : forall m x e, InA eqke (x,e) (elements m) -> MapsTo x e m.
Proof.
auto.
Qed.
Lemma elements_3w : forall m (Hm:NoDupA m), NoDupA (elements m).
Proof.
auto.
Qed.
(** * [fold] *)
Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A :=
match m with
| nil => acc
| (k,e)::m' => fold f m' (f k e acc)
end.
Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; functional induction (@fold A f m i); auto.
Qed.
(** * [equal] *)
Definition check (cmp : elt -> elt -> bool)(k:key)(e:elt)(m': t elt) :=
match find k m' with
| None => false
| Some e' => cmp e e'
end.
Definition submap (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
fold (fun k e b => andb (check cmp k e m') b) m true.
Definition equal (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
andb (submap cmp m m') (submap (fun e' e => cmp e e') m' m).
Definition Submap cmp m m' :=
(forall k, In k m -> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Definition Equivb cmp m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma submap_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
Submap cmp m m' -> submap cmp m m' = true.
Proof.
unfold Submap, submap.
induction m.
simpl; auto.
destruct a; simpl; intros.
destruct H.
inversion_clear Hm.
assert (H3 : In t0 m').
apply H; exists e; auto.
destruct H3 as (e', H3).
unfold check at 2; rewrite (find_1 Hm' H3).
rewrite (H0 t0); simpl; auto.
eapply IHm; auto.
split; intuition.
apply H.
destruct H5 as (e'',H5); exists e''; auto.
apply H0 with k; auto.
Qed.
Lemma submap_2 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
submap cmp m m' = true -> Submap cmp m m'.
Proof.
unfold Submap, submap.
induction m.
simpl; auto.
intuition.
destruct H0; inversion H0.
inversion H0.
destruct a; simpl; intros.
inversion_clear Hm.
rewrite andb_b_true in H.
assert (check cmp t0 e m' = true).
clear H1 H0 Hm' IHm.
set (b:=check cmp t0 e m') in *.
generalize H; clear H; generalize b; clear b.
induction m; simpl; auto; intros.
destruct a; simpl in *.
destruct (andb_prop _ _ (IHm _ H)); auto.
rewrite H2 in H.
destruct (IHm H1 m' Hm' cmp H); auto.
unfold check in H2.
case_eq (find t0 m'); [intros e' H5 | intros H5];
rewrite H5 in H2; try discriminate.
split; intros.
destruct H6 as (e0,H6); inversion_clear H6.
compute in H7; destruct H7; subst.
exists e'.
apply PX.MapsTo_eq with t0; auto.
apply find_2; auto.
apply H3.
exists e0; auto.
inversion_clear H6.
compute in H8; destruct H8; subst.
rewrite (find_1 Hm' (PX.MapsTo_eq H6 H7)) in H5; congruence.
apply H4 with k; auto.
Qed.
(** Specification of [equal] *)
Lemma equal_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold Equivb, equal.
intuition.
apply andb_true_intro; split; apply submap_1; unfold Submap; firstorder.
Qed.
Lemma equal_2 : forall m (Hm:NoDupA m) m' (Hm':NoDupA m') cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold Equivb, equal.
intros.
destruct (andb_prop _ _ H); clear H.
generalize (submap_2 Hm Hm' H0).
generalize (submap_2 Hm' Hm H1).
firstorder.
Qed.
Variable elt':Type.
(** * [map] and [mapi] *)
Fixpoint map (f:elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f e) :: map f m'
end.
Fixpoint mapi (f: key -> elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f k e) :: mapi f m'
end.
End Elt.
Section Elt2.
(* A new section is necessary for previous definitions to work
with different [elt], especially [MapsTo]... *)
Variable elt elt' : Type.
(** Specification of [map] *)
Lemma map_1 : forall (m:t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros m x e f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m.
inversion 1.
destruct a as (x',e').
simpl.
inversion_clear 1.
constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
constructor 2.
unfold MapsTo in *; auto.
Qed.
Lemma map_2 : forall (m:t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros m x f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
intros (e,abs).
inversion abs.
destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
inversion H; subst; rename x0 into e'.
exists e; constructor.
unfold eqke in *; simpl in *; intuition.
destruct IHm as (e'',hyp).
exists e'; auto.
exists e''.
constructor 2; auto.
Qed.
Lemma map_NoDup : forall m (Hm : NoDupA (@eqk elt) m)(f:elt->elt'),
NoDupA (@eqk elt') (map f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm.
constructor; auto.
contradict H.
(* il faut un map_1 avec eqk au lieu de eqke *)
clear IHm H0.
induction m; simpl in *; auto.
inversion H.
destruct a; inversion H; auto.
Qed.
(** Specification of [mapi] *)
Lemma mapi_1 : forall (m:t elt)(x:key)(e:elt)(f:key->elt->elt'),
MapsTo x e m ->
exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros m x e f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m.
inversion 1.
destruct a as (x',e').
simpl.
inversion_clear 1.
exists x'.
destruct H0; simpl in *.
split; auto.
constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
destruct IHm as (y, hyp); auto.
exists y; intuition.
Qed.
Lemma mapi_2 : forall (m:t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros m x f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
intros (e,abs).
inversion abs.
destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
inversion H; subst; rename x0 into e'.
exists e; constructor.
unfold eqke in *; simpl in *; intuition.
destruct IHm as (e'',hyp).
exists e'; auto.
exists e''.
constructor 2; auto.
Qed.
Lemma mapi_NoDup : forall m (Hm : NoDupA (@eqk elt) m)(f: key->elt->elt'),
NoDupA (@eqk elt') (mapi f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm; auto.
constructor; auto.
contradict H.
clear IHm H0.
induction m; simpl in *; auto.
inversion_clear H.
destruct a; inversion_clear H; auto.
Qed.
End Elt2.
Section Elt3.
Variable elt elt' elt'' : Type.
Notation oee' := (option elt * option elt')%type.
Definition combine_l (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e => (Some e, find k m')) m.
Definition combine_r (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e' => (find k m, Some e')) m'.
Definition fold_right_pair (A B C:Type)(f:A->B->C->C)(l:list (A*B))(i:C) :=
List.fold_right (fun p => f (fst p) (snd p)) i l.
Definition combine (m:t elt)(m':t elt') : t oee' :=
let l := combine_l m m' in
let r := combine_r m m' in
fold_right_pair (add (elt:=oee')) l r.
Lemma fold_right_pair_NoDup :
forall l r (Hl: NoDupA (eqk (elt:=oee')) l)
(Hl: NoDupA (eqk (elt:=oee')) r),
NoDupA (eqk (elt:=oee')) (fold_right_pair (add (elt:=oee')) l r).
Proof.
induction l; simpl; auto.
destruct a; simpl; auto.
inversion_clear 1.
intros; apply add_NoDup; auto.
Qed.
Hint Resolve fold_right_pair_NoDup.
Lemma combine_NoDup :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m'),
NoDupA (@eqk oee') (combine m m').
Proof.
unfold combine, combine_r, combine_l.
intros.
set (f1 := fun (k : key) (e : elt) => (Some e, find k m')).
set (f2 := fun (k : key) (e' : elt') => (find k m, Some e')).
generalize (mapi_NoDup Hm f1).
generalize (mapi_NoDup Hm' f2).
set (l := mapi f1 m); clearbody l.
set (r := mapi f2 m'); clearbody r.
auto.
Qed.
Definition at_least_left (o:option elt)(o':option elt') :=
match o with
| None => None
| _ => Some (o,o')
end.
Definition at_least_right (o:option elt)(o':option elt') :=
match o' with
| None => None
| _ => Some (o,o')
end.
Lemma combine_l_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine_l m m') = at_least_left (find x m) (find x m').
Proof.
unfold combine_l.
intros.
case_eq (find x m); intros.
simpl.
apply find_1.
apply mapi_NoDup; auto.
destruct (mapi_1 (fun k e => (Some e, find k m')) (find_2 H)) as (y,(H0,H1)).
rewrite (find_eq Hm' (X.eq_sym H0)); auto.
simpl.
case_eq (find x (mapi (fun k e => (Some e, find k m')) m)); intros; auto.
destruct (@mapi_2 _ _ m x (fun k e => (Some e, find k m'))).
exists p; apply find_2; auto.
rewrite (find_1 Hm H1) in H; discriminate.
Qed.
Lemma combine_r_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine_r m m') = at_least_right (find x m) (find x m').
Proof.
unfold combine_r.
intros.
case_eq (find x m'); intros.
simpl.
apply find_1.
apply mapi_NoDup; auto.
destruct (mapi_1 (fun k e => (find k m, Some e)) (find_2 H)) as (y,(H0,H1)).
rewrite (find_eq Hm (X.eq_sym H0)); auto.
simpl.
case_eq (find x (mapi (fun k e' => (find k m, Some e')) m')); intros; auto.
destruct (@mapi_2 _ _ m' x (fun k e' => (find k m, Some e'))).
exists p; apply find_2; auto.
rewrite (find_1 Hm' H1) in H; discriminate.
Qed.
Definition at_least_one (o:option elt)(o':option elt') :=
match o, o' with
| None, None => None
| _, _ => Some (o,o')
end.
Lemma combine_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine m m') = at_least_one (find x m) (find x m').
Proof.
unfold combine.
intros.
generalize (combine_r_1 Hm Hm' x).
generalize (combine_l_1 Hm Hm' x).
assert (NoDupA (eqk (elt:=oee')) (combine_l m m')).
unfold combine_l; apply mapi_NoDup; auto.
assert (NoDupA (eqk (elt:=oee')) (combine_r m m')).
unfold combine_r; apply mapi_NoDup; auto.
set (l := combine_l m m') in *; clearbody l.
set (r := combine_r m m') in *; clearbody r.
set (o := find x m); clearbody o.
set (o' := find x m'); clearbody o'.
clear Hm' Hm m m'.
induction l.
destruct o; destruct o'; simpl; intros; discriminate || auto.
destruct a; simpl in *; intros.
destruct (X.eq_dec x t0); simpl in *.
unfold at_least_left in H1.
destruct o; simpl in *; try discriminate.
inversion H1; subst.
apply add_eq; auto.
inversion_clear H; auto.
inversion_clear H.
rewrite <- IHl; auto.
apply add_not_eq; auto.
Qed.
Variable f : option elt -> option elt' -> option elt''.
Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
match o with
| Some e => (k,e)::l
| None => l
end.
Definition map2 m m' :=
let m0 : t oee' := combine m m' in
let m1 : t (option elt'') := map (fun p => f (fst p) (snd p)) m0 in
fold_right_pair (option_cons (A:=elt'')) m1 nil.
Lemma map2_NoDup :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m'),
NoDupA (@eqk elt'') (map2 m m').
Proof.
intros.
unfold map2.
assert (H0:=combine_NoDup Hm Hm').
set (l0:=combine m m') in *; clearbody l0.
set (f':= fun p : oee' => f (fst p) (snd p)).
assert (H1:=map_NoDup (elt' := option elt'') H0 f').
set (l1:=map f' l0) in *; clearbody l1.
clear f' f H0 l0 Hm Hm' m m'.
induction l1.
simpl; auto.
inversion_clear H1.
destruct a; destruct o; simpl; auto.
constructor; auto.
contradict H.
clear IHl1.
induction l1.
inversion H.
inversion_clear H0.
destruct a; destruct o; simpl in *; auto.
inversion_clear H; auto.
Qed.
Definition at_least_one_then_f (o:option elt)(o':option elt') :=
match o, o' with
| None, None => None
| _, _ => f o o'
end.
Lemma map2_0 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (map2 m m') = at_least_one_then_f (find x m) (find x m').
Proof.
intros.
unfold map2.
assert (H:=combine_1 Hm Hm' x).
assert (H2:=combine_NoDup Hm Hm').
set (f':= fun p : oee' => f (fst p) (snd p)).
set (m0 := combine m m') in *; clearbody m0.
set (o:=find x m) in *; clearbody o.
set (o':=find x m') in *; clearbody o'.
clear Hm Hm' m m'.
generalize H; clear H.
match goal with |- ?m=?n -> ?p=?q =>
assert ((m=n->p=q)/\(m=None -> p=None)); [|intuition] end.
induction m0; simpl in *; intuition.
destruct o; destruct o'; simpl in *; try discriminate; auto.
destruct a as (k,(oo,oo')); simpl in *.
inversion_clear H2.
destruct (X.eq_dec x k); simpl in *.
(* x = k *)
assert (at_least_one_then_f o o' = f oo oo').
destruct o; destruct o'; simpl in *; inversion_clear H; auto.
rewrite H2.
unfold f'; simpl.
destruct (f oo oo'); simpl.
destruct (X.eq_dec x k); try contradict n; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
case_eq (find x m0); intros; auto.
elim H0.
apply InA_eqk with (x,p); auto.
apply InA_eqke_eqk.
exact (find_2 H3).
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
destruct (X.eq_dec x k); [ contradict n; auto | auto].
destruct (IHm0 H1) as (H3,_); apply H3; auto.
destruct (IHm0 H1) as (H3,_); apply H3; auto.
(* None -> None *)
destruct a as (k,(oo,oo')).
simpl.
inversion_clear H2.
destruct (X.eq_dec x k).
(* x = k *)
discriminate.
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
destruct (X.eq_dec x k); [ contradict n; auto | auto].
destruct (IHm0 H1) as (_,H4); apply H4; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
Qed.
(** Specification of [map2] *)
Lemma map2_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
In x m \/ In x m' ->
find x (map2 m m') = f (find x m) (find x m').
Proof.
intros.
rewrite map2_0; auto.
destruct H as [(e,H)|(e,H)].
rewrite (find_1 Hm H).
destruct (find x m'); simpl; auto.
rewrite (find_1 Hm' H).
destruct (find x m); simpl; auto.
Qed.
Lemma map2_2 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
In x (map2 m m') -> In x m \/ In x m'.
Proof.
intros.
destruct H as (e,H).
generalize (map2_0 Hm Hm' x).
rewrite (find_1 (map2_NoDup Hm Hm') H).
generalize (@find_2 _ m x).
generalize (@find_2 _ m' x).
destruct (find x m);
destruct (find x m'); simpl; intros.
left; exists e0; auto.
left; exists e0; auto.
right; exists e0; auto.
discriminate.
Qed.
End Elt3.
End Raw.
Module Make (X: DecidableType) <: WS with Module E:=X.
Module Raw := Raw X.
Module E := X.
Definition key := E.t.
Record slist (elt:Type) :=
{this :> Raw.t elt; NoDup : NoDupA (@Raw.PX.eqk elt) this}.
Definition t (elt:Type) := slist elt.
Section Elt.
Variable elt elt' elt'':Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Build_slist (Raw.empty_NoDup elt).
Definition is_empty m : bool := Raw.is_empty m.(this).
Definition add x e m : t elt := Build_slist (Raw.add_NoDup m.(NoDup) x e).
Definition find x m : option elt := Raw.find x m.(this).
Definition remove x m : t elt := Build_slist (Raw.remove_NoDup m.(NoDup) x).
Definition mem x m : bool := Raw.mem x m.(this).
Definition map f m : t elt' := Build_slist (Raw.map_NoDup m.(NoDup) f).
Definition mapi (f:key->elt->elt') m : t elt' := Build_slist (Raw.mapi_NoDup m.(NoDup) f).
Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_NoDup f m.(NoDup) m'.(NoDup)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
Definition cardinal m := length m.(this).
Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
Definition equal cmp m m' : bool := @Raw.equal elt cmp m.(this) m'.(this).
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this).
Definition In x m : Prop := Raw.PX.In x m.(this).
Definition Empty m : Prop := Raw.Empty m.(this).
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp m.(this) m'.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros m; exact (@Raw.PX.MapsTo_eq elt m.(this)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof. intros m; exact (@Raw.mem_1 elt m.(this) m.(NoDup)). Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof. intros m; exact (@Raw.mem_2 elt m.(this) m.(NoDup)). Qed.
Lemma empty_1 : Empty empty.
Proof. exact (@Raw.empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof. intros m; exact (@Raw.is_empty_1 elt m.(this)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof. intros m; exact (@Raw.is_empty_2 elt m.(this)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof. intros m; exact (@Raw.add_1 elt m.(this)). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof. intros m; exact (@Raw.add_2 elt m.(this)). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof. intros m; exact (@Raw.add_3 elt m.(this)). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof. intros m; exact (@Raw.remove_1 elt m.(this) m.(NoDup)). Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof. intros m; exact (@Raw.remove_2 elt m.(this) m.(NoDup)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m; exact (@Raw.remove_3 elt m.(this) m.(NoDup)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m; exact (@Raw.find_1 elt m.(this) m.(NoDup)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@Raw.find_2 elt m.(this)). Qed.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof. intros m; exact (@Raw.elements_1 elt m.(this)). Qed.
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof. intros m; exact (@Raw.elements_2 elt m.(this)). Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(NoDup)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof. intros; reflexivity. Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed.
Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof. intros m m'; exact (@Raw.equal_1 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed.
Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof. intros m m'; exact (@Raw.equal_2 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' m.(this)). Qed.
Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' m.(this)). Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' m.(this)). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' m.(this)). Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_1 elt elt' elt'' f m.(this) m.(NoDup) m'.(this) m'.(NoDup) x).
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_2 elt elt' elt'' f m.(this) m.(NoDup) m'.(this) m'.(NoDup) x).
Qed.
End Make.
|