1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Finite sets library.
* Authors: Pierre Letouzey and Jean-Christophe Filliâtre
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
(* $Id: FMapPositive.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import Bool.
Require Import ZArith.
Require Import OrderedType.
Require Import OrderedTypeEx.
Require Import FMapInterface.
Set Implicit Arguments.
Open Local Scope positive_scope.
(** * An implementation of [FMapInterface.S] for positive keys. *)
(** This file is an adaptation to the [FMap] framework of a work by
Xavier Leroy and Sandrine Blazy (used for building certified compilers).
Keys are of type [positive], and maps are binary trees: the sequence
of binary digits of a positive number corresponds to a path in such a tree.
This is quite similar to the [IntMap] library, except that no path compression
is implemented, and that the current file is simple enough to be
self-contained. *)
(** Even if [positive] can be seen as an ordered type with respect to the
usual order (see [OrderedTypeEx]), we use here a lexicographic order
over bits, which is more natural here (lower bits are considered first). *)
Module PositiveOrderedTypeBits <: UsualOrderedType.
Definition t:=positive.
Definition eq:=@eq positive.
Definition eq_refl := @refl_equal t.
Definition eq_sym := @sym_eq t.
Definition eq_trans := @trans_eq t.
Fixpoint bits_lt (p q:positive) { struct p } : Prop :=
match p, q with
| xH, xI _ => True
| xH, _ => False
| xO p, xO q => bits_lt p q
| xO _, _ => True
| xI p, xI q => bits_lt p q
| xI _, _ => False
end.
Definition lt:=bits_lt.
Lemma bits_lt_trans : forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
Proof.
induction x.
induction y; destruct z; simpl; eauto; intuition.
induction y; destruct z; simpl; eauto; intuition.
induction y; destruct z; simpl; eauto; intuition.
Qed.
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
exact bits_lt_trans.
Qed.
Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
Proof.
induction x; simpl; auto.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
intros; intro.
rewrite <- H0 in H; clear H0 y.
unfold lt in H.
exact (bits_lt_antirefl x H).
Qed.
Definition compare : forall x y : t, Compare lt eq x y.
Proof.
induction x; destruct y.
(* I I *)
destruct (IHx y).
apply LT; auto.
apply EQ; rewrite e; red; auto.
apply GT; auto.
(* I O *)
apply GT; simpl; auto.
(* I H *)
apply GT; simpl; auto.
(* O I *)
apply LT; simpl; auto.
(* O O *)
destruct (IHx y).
apply LT; auto.
apply EQ; rewrite e; red; auto.
apply GT; auto.
(* O H *)
apply LT; simpl; auto.
(* H I *)
apply LT; simpl; auto.
(* H O *)
apply GT; simpl; auto.
(* H H *)
apply EQ; red; auto.
Qed.
End PositiveOrderedTypeBits.
(** Other positive stuff *)
Lemma peq_dec (x y: positive): {x = y} + {x <> y}.
Proof.
intros. case_eq ((x ?= y) Eq); intros.
left. apply Pcompare_Eq_eq; auto.
right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
Qed.
Fixpoint append (i j : positive) {struct i} : positive :=
match i with
| xH => j
| xI ii => xI (append ii j)
| xO ii => xO (append ii j)
end.
Lemma append_assoc_0 :
forall (i j : positive), append i (xO j) = append (append i (xO xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_assoc_1 :
forall (i j : positive), append i (xI j) = append (append i (xI xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_neutral_r : forall (i : positive), append i xH = i.
Proof.
induction i; simpl; congruence.
Qed.
Lemma append_neutral_l : forall (i : positive), append xH i = i.
Proof.
simpl; auto.
Qed.
(** The module of maps over positive keys *)
Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
Module ME:=KeyOrderedType E.
Definition key := positive.
Inductive tree (A : Type) :=
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.
Definition t := tree.
Section A.
Variable A:Type.
Implicit Arguments Leaf [A].
Definition empty : t A := Leaf.
Fixpoint is_empty (m : t A) {struct m} : bool :=
match m with
| Leaf => true
| Node l None r => (is_empty l) && (is_empty r)
| _ => false
end.
Fixpoint find (i : positive) (m : t A) {struct i} : option A :=
match m with
| Leaf => None
| Node l o r =>
match i with
| xH => o
| xO ii => find ii l
| xI ii => find ii r
end
end.
Fixpoint mem (i : positive) (m : t A) {struct i} : bool :=
match m with
| Leaf => false
| Node l o r =>
match i with
| xH => match o with None => false | _ => true end
| xO ii => mem ii l
| xI ii => mem ii r
end
end.
Fixpoint add (i : positive) (v : A) (m : t A) {struct i} : t A :=
match m with
| Leaf =>
match i with
| xH => Node Leaf (Some v) Leaf
| xO ii => Node (add ii v Leaf) None Leaf
| xI ii => Node Leaf None (add ii v Leaf)
end
| Node l o r =>
match i with
| xH => Node l (Some v) r
| xO ii => Node (add ii v l) o r
| xI ii => Node l o (add ii v r)
end
end.
Fixpoint remove (i : positive) (m : t A) {struct i} : t A :=
match i with
| xH =>
match m with
| Leaf => Leaf
| Node Leaf o Leaf => Leaf
| Node l o r => Node l None r
end
| xO ii =>
match m with
| Leaf => Leaf
| Node l None Leaf =>
match remove ii l with
| Leaf => Leaf
| mm => Node mm None Leaf
end
| Node l o r => Node (remove ii l) o r
end
| xI ii =>
match m with
| Leaf => Leaf
| Node Leaf None r =>
match remove ii r with
| Leaf => Leaf
| mm => Node Leaf None mm
end
| Node l o r => Node l o (remove ii r)
end
end.
(** [elements] *)
Fixpoint xelements (m : t A) (i : positive) {struct m}
: list (positive * A) :=
match m with
| Leaf => nil
| Node l None r =>
(xelements l (append i (xO xH))) ++ (xelements r (append i (xI xH)))
| Node l (Some x) r =>
(xelements l (append i (xO xH)))
++ ((i, x) :: xelements r (append i (xI xH)))
end.
(* Note: function [xelements] above is inefficient. We should apply
deforestation to it, but that makes the proofs even harder. *)
Definition elements (m : t A) := xelements m xH.
(** [cardinal] *)
Fixpoint cardinal (m : t A) : nat :=
match m with
| Leaf => 0%nat
| Node l None r => (cardinal l + cardinal r)%nat
| Node l (Some _) r => S (cardinal l + cardinal r)
end.
Section CompcertSpec.
Theorem gempty:
forall (i: positive), find i empty = None.
Proof.
destruct i; simpl; auto.
Qed.
Theorem gss:
forall (i: positive) (x: A) (m: t A), find i (add i x m) = Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf : forall (i : positive), find i (Leaf : t A) = None.
Proof. exact gempty. Qed.
Theorem gso:
forall (i j: positive) (x: A) (m: t A),
i <> j -> find i (add j x m) = find i m.
Proof.
induction i; intros; destruct j; destruct m; simpl;
try rewrite <- (gleaf i); auto; try apply IHi; congruence.
Qed.
Lemma rleaf : forall (i : positive), remove i (Leaf : t A) = Leaf.
Proof. destruct i; simpl; auto. Qed.
Theorem grs:
forall (i: positive) (m: t A), find i (remove i m) = None.
Proof.
induction i; destruct m.
simpl; auto.
destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto.
rewrite (rleaf i); auto.
cut (find i (remove i (Node ll oo rr)) = None).
destruct (remove i (Node ll oo rr)); auto; apply IHi.
apply IHi.
simpl; auto.
destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto.
rewrite (rleaf i); auto.
cut (find i (remove i (Node ll oo rr)) = None).
destruct (remove i (Node ll oo rr)); auto; apply IHi.
apply IHi.
simpl; auto.
destruct m1; destruct m2; simpl; auto.
Qed.
Theorem gro:
forall (i j: positive) (m: t A),
i <> j -> find i (remove j m) = find i m.
Proof.
induction i; intros; destruct j; destruct m;
try rewrite (rleaf (xI j));
try rewrite (rleaf (xO j));
try rewrite (rleaf 1); auto;
destruct m1; destruct o; destruct m2;
simpl;
try apply IHi; try congruence;
try rewrite (rleaf j); auto;
try rewrite (gleaf i); auto.
cut (find i (remove j (Node m2_1 o m2_2)) = find i (Node m2_1 o m2_2));
[ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf i); auto
| apply IHi; congruence ].
destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i);
auto.
destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i);
auto.
cut (find i (remove j (Node m1_1 o0 m1_2)) = find i (Node m1_1 o0 m1_2));
[ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf i); auto
| apply IHi; congruence ].
destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i);
auto.
destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i);
auto.
Qed.
Lemma xelements_correct:
forall (m: t A) (i j : positive) (v: A),
find i m = Some v -> List.In (append j i, v) (xelements m j).
Proof.
induction m; intros.
rewrite (gleaf i) in H; congruence.
destruct o; destruct i; simpl; simpl in H.
rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
apply IHm2; auto.
rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
rewrite append_neutral_r; apply in_or_app; injection H;
intro EQ; rewrite EQ; right; apply in_eq.
rewrite append_assoc_1; apply in_or_app; right; apply IHm2; auto.
rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
congruence.
Qed.
Theorem elements_correct:
forall (m: t A) (i: positive) (v: A),
find i m = Some v -> List.In (i, v) (elements m).
Proof.
intros m i v H.
exact (xelements_correct m i xH H).
Qed.
Fixpoint xfind (i j : positive) (m : t A) {struct j} : option A :=
match i, j with
| _, xH => find i m
| xO ii, xO jj => xfind ii jj m
| xI ii, xI jj => xfind ii jj m
| _, _ => None
end.
Lemma xfind_left :
forall (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; congruence.
Qed.
Lemma xelements_ii :
forall (m: t A) (i j : positive) (v: A),
List.In (xI i, v) (xelements m (xI j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
simpl; auto.
intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
apply in_or_app.
left; apply IHm1; auto.
right; destruct (in_inv H0).
injection H1; intros Eq1 Eq2; rewrite Eq1; rewrite Eq2; apply in_eq.
apply in_cons; apply IHm2; auto.
left; apply IHm1; auto.
right; apply IHm2; auto.
Qed.
Lemma xelements_io :
forall (m: t A) (i j : positive) (v: A),
~List.In (xI i, v) (xelements m (xO j)).
Proof.
induction m.
simpl; auto.
intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
apply (IHm1 _ _ _ H0).
destruct (in_inv H0).
congruence.
apply (IHm2 _ _ _ H1).
apply (IHm1 _ _ _ H0).
apply (IHm2 _ _ _ H0).
Qed.
Lemma xelements_oo :
forall (m: t A) (i j : positive) (v: A),
List.In (xO i, v) (xelements m (xO j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
simpl; auto.
intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
apply in_or_app.
left; apply IHm1; auto.
right; destruct (in_inv H0).
injection H1; intros Eq1 Eq2; rewrite Eq1; rewrite Eq2; apply in_eq.
apply in_cons; apply IHm2; auto.
left; apply IHm1; auto.
right; apply IHm2; auto.
Qed.
Lemma xelements_oi :
forall (m: t A) (i j : positive) (v: A),
~List.In (xO i, v) (xelements m (xI j)).
Proof.
induction m.
simpl; auto.
intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
apply (IHm1 _ _ _ H0).
destruct (in_inv H0).
congruence.
apply (IHm2 _ _ _ H1).
apply (IHm1 _ _ _ H0).
apply (IHm2 _ _ _ H0).
Qed.
Lemma xelements_ih :
forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
List.In (xI i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m2 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
destruct (in_inv H0).
congruence.
apply xelements_ii; auto.
absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
apply xelements_ii; auto.
Qed.
Lemma xelements_oh :
forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
List.In (xO i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m1 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
apply xelements_oo; auto.
destruct (in_inv H0).
congruence.
absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
apply xelements_oo; auto.
absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
Qed.
Lemma xelements_hi :
forall (m: t A) (i : positive) (v: A),
~List.In (xH, v) (xelements m (xI i)).
Proof.
induction m; intros.
simpl; auto.
destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
generalize H0; apply IHm1; auto.
destruct (in_inv H0).
congruence.
generalize H1; apply IHm2; auto.
generalize H0; apply IHm1; auto.
generalize H0; apply IHm2; auto.
Qed.
Lemma xelements_ho :
forall (m: t A) (i : positive) (v: A),
~List.In (xH, v) (xelements m (xO i)).
Proof.
induction m; intros.
simpl; auto.
destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
generalize H0; apply IHm1; auto.
destruct (in_inv H0).
congruence.
generalize H1; apply IHm2; auto.
generalize H0; apply IHm1; auto.
generalize H0; apply IHm2; auto.
Qed.
Lemma find_xfind_h :
forall (m: t A) (i: positive), find i m = xfind i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
forall (i j : positive) (m: t A) (v: A),
List.In (i, v) (xelements m j) -> xfind i j m = Some v.
Proof.
induction i; simpl; intros; destruct j; simpl.
apply IHi; apply xelements_ii; auto.
absurd (List.In (xI i, v) (xelements m (xO j))); auto; apply xelements_io.
destruct m.
simpl in H; tauto.
rewrite find_xfind_h. apply IHi. apply (xelements_ih _ _ _ _ _ H).
absurd (List.In (xO i, v) (xelements m (xI j))); auto; apply xelements_oi.
apply IHi; apply xelements_oo; auto.
destruct m.
simpl in H; tauto.
rewrite find_xfind_h. apply IHi. apply (xelements_oh _ _ _ _ _ H).
absurd (List.In (xH, v) (xelements m (xI j))); auto; apply xelements_hi.
absurd (List.In (xH, v) (xelements m (xO j))); auto; apply xelements_ho.
destruct m.
simpl in H; tauto.
destruct o; simpl in H; destruct (in_app_or _ _ _ H).
absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
destruct (in_inv H0).
congruence.
absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
Qed.
Theorem elements_complete:
forall (m: t A) (i: positive) (v: A),
List.In (i, v) (elements m) -> find i m = Some v.
Proof.
intros m i v H.
unfold elements in H.
rewrite find_xfind_h.
exact (xelements_complete i xH m v H).
Qed.
Lemma cardinal_1 :
forall (m: t A), cardinal m = length (elements m).
Proof.
unfold elements.
intros m; set (p:=1); clearbody p; revert m p.
induction m; simpl; auto; intros.
rewrite (IHm1 (append p 2)), (IHm2 (append p 3)); auto.
destruct o; rewrite app_length; simpl; omega.
Qed.
End CompcertSpec.
Definition MapsTo (i:positive)(v:A)(m:t A) := find i m = Some v.
Definition In (i:positive)(m:t A) := exists e:A, MapsTo i e m.
Definition Empty m := forall (a : positive)(e:A) , ~ MapsTo a e m.
Definition eq_key (p p':positive*A) := E.eq (fst p) (fst p').
Definition eq_key_elt (p p':positive*A) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
Definition lt_key (p p':positive*A) := E.lt (fst p) (fst p').
Lemma mem_find :
forall m x, mem x m = match find x m with None => false | _ => true end.
Proof.
induction m; destruct x; simpl; auto.
Qed.
Lemma Empty_alt : forall m, Empty m <-> forall a, find a m = None.
Proof.
unfold Empty, MapsTo.
intuition.
generalize (H a).
destruct (find a m); intuition.
elim (H0 a0); auto.
rewrite H in H0; discriminate.
Qed.
Lemma Empty_Node : forall l o r, Empty (Node l o r) <-> o=None /\ Empty l /\ Empty r.
Proof.
intros l o r.
split.
rewrite Empty_alt.
split.
destruct o; auto.
generalize (H 1); simpl; auto.
split; rewrite Empty_alt; intros.
generalize (H (xO a)); auto.
generalize (H (xI a)); auto.
intros (H,(H0,H1)).
subst.
rewrite Empty_alt; intros.
destruct a; auto.
simpl; generalize H1; rewrite Empty_alt; auto.
simpl; generalize H0; rewrite Empty_alt; auto.
Qed.
Section FMapSpec.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, MapsTo; intros m x; rewrite mem_find.
destruct 1 as (e0,H0); rewrite H0; auto.
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, MapsTo; intros m x; rewrite mem_find.
destruct (find x m).
exists a; auto.
intros; discriminate.
Qed.
Variable m m' m'' : t A.
Variable x y z : key.
Variable e e' : A.
Lemma MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros; rewrite <- H; auto. Qed.
Lemma find_1 : MapsTo x e m -> find x m = Some e.
Proof. unfold MapsTo; auto. Qed.
Lemma find_2 : find x m = Some e -> MapsTo x e m.
Proof. red; auto. Qed.
Lemma empty_1 : Empty empty.
Proof.
rewrite Empty_alt; apply gempty.
Qed.
Lemma is_empty_1 : Empty m -> is_empty m = true.
Proof.
induction m; simpl; auto.
rewrite Empty_Node.
intros (H,(H0,H1)).
subst; simpl.
rewrite IHt0_1; simpl; auto.
Qed.
Lemma is_empty_2 : is_empty m = true -> Empty m.
Proof.
induction m; simpl; auto.
rewrite Empty_alt.
intros _; exact gempty.
rewrite Empty_Node.
destruct o.
intros; discriminate.
intro H; destruct (andb_prop _ _ H); intuition.
Qed.
Lemma add_1 : E.eq x y -> MapsTo y e (add x e m).
Proof.
unfold MapsTo.
intro H; rewrite H; clear H.
apply gss.
Qed.
Lemma add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
unfold MapsTo.
intros; rewrite gso; auto.
Qed.
Lemma add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
unfold MapsTo.
intro H; rewrite gso; auto.
Qed.
Lemma remove_1 : E.eq x y -> ~ In y (remove x m).
Proof.
intros; intro.
generalize (mem_1 H0).
rewrite mem_find.
rewrite H.
rewrite grs.
intros; discriminate.
Qed.
Lemma remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
unfold MapsTo.
intro H; rewrite gro; auto.
Qed.
Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
unfold MapsTo.
destruct (peq_dec x y).
subst.
rewrite grs; intros; discriminate.
rewrite gro; auto.
Qed.
Lemma elements_1 :
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
unfold MapsTo.
rewrite InA_alt.
intro H.
exists (x,e).
split.
red; simpl; unfold E.eq; auto.
apply elements_correct; auto.
Qed.
Lemma elements_2 :
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
unfold MapsTo.
rewrite InA_alt.
intros ((e0,a),(H,H0)).
red in H; simpl in H; unfold E.eq in H; destruct H; subst.
apply elements_complete; auto.
Qed.
Lemma xelements_bits_lt_1 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xO q))) -> E.bits_lt p0 p.
Proof.
intros.
generalize (xelements_complete _ _ _ _ H); clear H; intros.
revert p0 q m v H.
induction p; destruct p0; simpl; intros; eauto; try discriminate.
Qed.
Lemma xelements_bits_lt_2 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xI q))) -> E.bits_lt p p0.
Proof.
intros.
generalize (xelements_complete _ _ _ _ H); clear H; intros.
revert p0 q m v H.
induction p; destruct p0; simpl; intros; eauto; try discriminate.
Qed.
Lemma xelements_sort : forall p, sort lt_key (xelements m p).
Proof.
induction m.
simpl; auto.
destruct o; simpl; intros.
(* Some *)
apply (SortA_app (eqA:=eq_key_elt)); auto.
compute; intuition.
constructor; auto.
apply In_InfA; intros.
destruct y0.
red; red; simpl.
eapply xelements_bits_lt_2; eauto.
intros x0 y0.
do 2 rewrite InA_alt.
intros (y1,(Hy1,H)) (y2,(Hy2,H0)).
destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst.
destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst.
red; red; simpl.
destruct H0.
injection H0; clear H0; intros _ H0; subst.
eapply xelements_bits_lt_1; eauto.
apply E.bits_lt_trans with p.
eapply xelements_bits_lt_1; eauto.
eapply xelements_bits_lt_2; eauto.
(* None *)
apply (SortA_app (eqA:=eq_key_elt)); auto.
compute; intuition.
intros x0 y0.
do 2 rewrite InA_alt.
intros (y1,(Hy1,H)) (y2,(Hy2,H0)).
destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst.
destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst.
red; red; simpl.
apply E.bits_lt_trans with p.
eapply xelements_bits_lt_1; eauto.
eapply xelements_bits_lt_2; eauto.
Qed.
Lemma elements_3 : sort lt_key (elements m).
Proof.
unfold elements.
apply xelements_sort; auto.
Qed.
Lemma elements_3w : NoDupA eq_key (elements m).
Proof.
change eq_key with (@ME.eqk A).
apply ME.Sort_NoDupA; apply elements_3; auto.
Qed.
End FMapSpec.
(** [map] and [mapi] *)
Variable B : Type.
Fixpoint xmapi (f : positive -> A -> B) (m : t A) (i : positive)
{struct m} : t B :=
match m with
| Leaf => @Leaf B
| Node l o r => Node (xmapi f l (append i (xO xH)))
(option_map (f i) o)
(xmapi f r (append i (xI xH)))
end.
Definition mapi (f : positive -> A -> B) m := xmapi f m xH.
Definition map (f : A -> B) m := mapi (fun _ => f) m.
End A.
Lemma xgmapi:
forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
find i (xmapi f m j) = option_map (f (append j i)) (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
rewrite (append_assoc_1 j i); apply IHi.
rewrite (append_assoc_0 j i); apply IHi.
rewrite (append_neutral_r j); auto.
Qed.
Theorem gmapi:
forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
find i (mapi f m) = option_map (f i) (find i m).
Proof.
intros.
unfold mapi.
replace (f i) with (f (append xH i)).
apply xgmapi.
rewrite append_neutral_l; auto.
Qed.
Lemma mapi_1 :
forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros.
exists x.
split; [red; auto|].
apply find_2.
generalize (find_1 H); clear H; intros.
rewrite gmapi.
rewrite H.
simpl; auto.
Qed.
Lemma mapi_2 :
forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros.
apply mem_2.
rewrite mem_find.
destruct H as (v,H).
generalize (find_1 H); clear H; intros.
rewrite gmapi in H.
destruct (find x m); auto.
simpl in *; discriminate.
Qed.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros; unfold map.
destruct (mapi_1 (fun _ => f) H); intuition.
Qed.
Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros; unfold map in *; eapply mapi_2; eauto.
Qed.
Section map2.
Variable A B C : Type.
Variable f : option A -> option B -> option C.
Implicit Arguments Leaf [A].
Fixpoint xmap2_l (m : t A) {struct m} : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r)
end.
Lemma xgmap2_l : forall (i : positive) (m : t A),
f None None = None -> find i (xmap2_l m) = f (find i m) None.
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Fixpoint xmap2_r (m : t B) {struct m} : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r)
end.
Lemma xgmap2_r : forall (i : positive) (m : t B),
f None None = None -> find i (xmap2_r m) = f None (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Fixpoint _map2 (m1 : t A)(m2 : t B) {struct m1} : t C :=
match m1 with
| Leaf => xmap2_r m2
| Node l1 o1 r1 =>
match m2 with
| Leaf => xmap2_l m1
| Node l2 o2 r2 => Node (_map2 l1 l2) (f o1 o2) (_map2 r1 r2)
end
end.
Lemma gmap2: forall (i: positive)(m1:t A)(m2: t B),
f None None = None ->
find i (_map2 m1 m2) = f (find i m1) (find i m2).
Proof.
induction i; intros; destruct m1; destruct m2; simpl; auto;
try apply xgmap2_r; try apply xgmap2_l; auto.
Qed.
End map2.
Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') :=
_map2 (fun o1 o2 => match o1,o2 with None,None => None | _, _ => f o1 o2 end).
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
unfold map2.
rewrite gmap2; auto.
generalize (@mem_1 _ m x) (@mem_1 _ m' x).
do 2 rewrite mem_find.
destruct (find x m); simpl; auto.
destruct (find x m'); simpl; auto.
intros.
destruct H; intuition; try discriminate.
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
intros.
generalize (mem_1 H); clear H; intros.
rewrite mem_find in H.
unfold map2 in H.
rewrite gmap2 in H; auto.
generalize (@mem_2 _ m x) (@mem_2 _ m' x).
do 2 rewrite mem_find.
destruct (find x m); simpl in *; auto.
destruct (find x m'); simpl in *; auto.
Qed.
Definition fold (A : Type)(B : Type) (f: positive -> A -> B -> B) (tr: t A) (v: B) :=
List.fold_left (fun a p => f (fst p) (snd p) a) (elements tr) v.
Lemma fold_1 :
forall (A:Type)(m:t A)(B:Type)(i : B) (f : key -> A -> B -> B),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; unfold fold; auto.
Qed.
Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) {struct m1} : bool :=
match m1, m2 with
| Leaf, _ => is_empty m2
| _, Leaf => is_empty m1
| Node l1 o1 r1, Node l2 o2 r2 =>
(match o1, o2 with
| None, None => true
| Some v1, Some v2 => cmp v1 v2
| _, _ => false
end)
&& equal cmp l1 l2 && equal cmp r1 r2
end.
Definition Equal (A:Type)(m m':t A) :=
forall y, find y m = find y m'.
Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp).
Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
induction m.
(* m = Leaf *)
destruct 1.
simpl.
apply is_empty_1.
red; red; intros.
assert (In a (Leaf A)).
rewrite H.
exists e; auto.
destruct H2; red in H2.
destruct a; simpl in *; discriminate.
(* m = Node *)
destruct m'.
(* m' = Leaf *)
destruct 1.
simpl.
destruct o.
assert (In xH (Leaf A)).
rewrite <- H.
exists a; red; auto.
destruct H1; red in H1; simpl in H1; discriminate.
apply andb_true_intro; split; apply is_empty_1; red; red; intros.
assert (In (xO a) (Leaf A)).
rewrite <- H.
exists e; auto.
destruct H2; red in H2; simpl in H2; discriminate.
assert (In (xI a) (Leaf A)).
rewrite <- H.
exists e; auto.
destruct H2; red in H2; simpl in H2; discriminate.
(* m' = Node *)
destruct 1.
assert (Equivb cmp m1 m'1).
split.
intros k; generalize (H (xO k)); unfold In, MapsTo; simpl; auto.
intros k e e'; generalize (H0 (xO k) e e'); unfold In, MapsTo; simpl; auto.
assert (Equivb cmp m2 m'2).
split.
intros k; generalize (H (xI k)); unfold In, MapsTo; simpl; auto.
intros k e e'; generalize (H0 (xI k) e e'); unfold In, MapsTo; simpl; auto.
simpl.
destruct o; destruct o0; simpl.
repeat (apply andb_true_intro; split); auto.
apply (H0 xH); red; auto.
generalize (H xH); unfold In, MapsTo; simpl; intuition.
destruct H4; try discriminate; eauto.
generalize (H xH); unfold In, MapsTo; simpl; intuition.
destruct H5; try discriminate; eauto.
apply andb_true_intro; split; auto.
Qed.
Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
induction m.
(* m = Leaf *)
simpl.
split; intros.
split.
destruct 1; red in H0; destruct k; discriminate.
destruct 1; elim (is_empty_2 H H0).
red in H0; destruct k; discriminate.
(* m = Node *)
destruct m'.
(* m' = Leaf *)
simpl.
destruct o; intros; try discriminate.
destruct (andb_prop _ _ H); clear H.
split; intros.
split; unfold In, MapsTo; destruct 1.
destruct k; simpl in *; try discriminate.
destruct (is_empty_2 H1 (find_2 _ _ H)).
destruct (is_empty_2 H0 (find_2 _ _ H)).
destruct k; simpl in *; discriminate.
unfold In, MapsTo; destruct k; simpl in *; discriminate.
(* m' = Node *)
destruct o; destruct o0; simpl; intros; try discriminate.
destruct (andb_prop _ _ H); clear H.
destruct (andb_prop _ _ H0); clear H0.
destruct (IHm1 _ _ H2); clear H2 IHm1.
destruct (IHm2 _ _ H1); clear H1 IHm2.
split; intros.
destruct k; unfold In, MapsTo in *; simpl; auto.
split; eauto.
destruct k; unfold In, MapsTo in *; simpl in *.
eapply H4; eauto.
eapply H3; eauto.
congruence.
destruct (andb_prop _ _ H); clear H.
destruct (IHm1 _ _ H0); clear H0 IHm1.
destruct (IHm2 _ _ H1); clear H1 IHm2.
split; intros.
destruct k; unfold In, MapsTo in *; simpl; auto.
split; eauto.
destruct k; unfold In, MapsTo in *; simpl in *.
eapply H3; eauto.
eapply H2; eauto.
try discriminate.
Qed.
End PositiveMap.
(** Here come some additionnal facts about this implementation.
Most are facts that cannot be derivable from the general interface. *)
Module PositiveMapAdditionalFacts.
Import PositiveMap.
(* Derivable from the Map interface *)
Theorem gsspec:
forall (A:Type)(i j: positive) (x: A) (m: t A),
find i (add j x m) = if peq_dec i j then Some x else find i m.
Proof.
intros.
destruct (peq_dec i j); [ rewrite e; apply gss | apply gso; auto ].
Qed.
(* Not derivable from the Map interface *)
Theorem gsident:
forall (A:Type)(i: positive) (m: t A) (v: A),
find i m = Some v -> add i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
rewrite (IHi m2 v H); congruence.
rewrite (IHi m1 v H); congruence.
Qed.
Lemma xmap2_lr :
forall (A B : Type)(f g: option A -> option A -> option B)(m : t A),
(forall (i j : option A), f i j = g j i) ->
xmap2_l f m = xmap2_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem map2_commut:
forall (A B: Type) (f g: option A -> option A -> option B),
(forall (i j: option A), f i j = g j i) ->
forall (m1 m2: t A),
_map2 f m1 m2 = _map2 g m2 m1.
Proof.
intros A B f g Eq1.
assert (Eq2: forall (i j: option A), g i j = f j i).
intros; auto.
induction m1; intros; destruct m2; simpl;
try rewrite Eq1;
repeat rewrite (xmap2_lr f g);
repeat rewrite (xmap2_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
End PositiveMapAdditionalFacts.
|