summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapFacts.v
blob: d91eb87ae2ce3b3bea174944f737f132195712e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id: FMapFacts.v 12187 2009-06-13 19:36:59Z msozeau $ *)

(** * Finite maps library *)

(** This functor derives additional facts from [FMapInterface.S]. These
  facts are mainly the specifications of [FMapInterface.S] written using 
  different styles: equivalence and boolean equalities. 
*)

Require Import Bool DecidableType DecidableTypeEx OrderedType Morphisms.
Require Export FMapInterface. 
Set Implicit Arguments.
Unset Strict Implicit.

Hint Extern 1 (Equivalence _) => constructor; congruence.

Notation Leibniz := (@eq _) (only parsing).


(** * Facts about weak maps *)

Module WFacts_fun (E:DecidableType)(Import M:WSfun E).

Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.

Lemma eq_bool_alt : forall b b', b=b' <-> (b=true <-> b'=true).
Proof.
 destruct b; destruct b'; intuition.
Qed.

Lemma eq_option_alt : forall (elt:Type)(o o':option elt),
 o=o' <-> (forall e, o=Some e <-> o'=Some e).
Proof.
split; intros.
subst; split; auto.
destruct o; destruct o'; try rewrite H; auto.
symmetry; rewrite <- H; auto.
Qed.

Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt), 
  MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
generalize (find_1 H) (find_1 H0); clear H H0.
intros; rewrite H in H0; injection H0; auto.
Qed.

(** ** Specifications written using equivalences *)

Section IffSpec. 
Variable elt elt' elt'': Type.
Implicit Type m: t elt.
Implicit Type x y z: key.
Implicit Type e: elt.

Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
Proof.
unfold In.
split; intros (e0,H0); exists e0.
apply (MapsTo_1 H H0); auto.
apply (MapsTo_1 (E.eq_sym H) H0); auto.
Qed.

Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
Proof.
split; apply MapsTo_1; auto.
Qed.

Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.

Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
Proof.
intros; rewrite mem_in_iff; destruct (mem x m); intuition.
Qed.

Lemma In_dec : forall m x, { In x m } + { ~ In x m }.
Proof.
 intros.
 generalize (mem_in_iff m x).
 destruct (mem x m); [left|right]; intuition.
Qed.

Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
Proof.
split; [apply find_1|apply find_2].
Qed.

Lemma not_find_in_iff : forall m x, ~In x m <-> find x m = None.
Proof.
split; intros.
rewrite eq_option_alt. intro e. rewrite <- find_mapsto_iff.
split; intro H'; try discriminate. elim H; exists e; auto.
intros (e,He); rewrite find_mapsto_iff,H in He; discriminate.
Qed.

Lemma in_find_iff : forall m x, In x m <-> find x m <> None.
Proof.
intros; rewrite <- not_find_in_iff, mem_in_iff.
destruct mem; intuition.
Qed.

Lemma equal_iff : forall m m' cmp, Equivb cmp m m' <-> equal cmp m m' = true.
Proof. 
split; [apply equal_1|apply equal_2].
Qed.

Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.

Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
Proof.
unfold In.
split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
Qed.

Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true. 
Proof. 
split; [apply is_empty_1|apply is_empty_2].
Qed.

Lemma add_mapsto_iff : forall m x y e e', 
  MapsTo y e' (add x e m) <-> 
     (E.eq x y /\ e=e') \/ 
     (~E.eq x y /\ MapsTo y e' m).
Proof. 
intros.
intuition.
destruct (eq_dec x y); [left|right].
split; auto.
symmetry; apply (MapsTo_fun (e':=e) H); auto with map.
split; auto; apply add_3 with x e; auto.
subst; auto with map.
Qed.

Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
Proof. 
unfold In; split.
intros (e',H).
destruct (eq_dec x y) as [E|E]; auto.
right; exists e'; auto.
apply (add_3 E H).
destruct (eq_dec x y) as [E|E]; auto.
intros.
exists e; apply add_1; auto.
intros [H|(e',H)].
destruct E; auto.
exists e'; apply add_2; auto.
Qed.

Lemma add_neq_mapsto_iff : forall m x y e e', 
 ~ E.eq x y -> (MapsTo y e' (add x e m)  <-> MapsTo y e' m).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.

Lemma add_neq_in_iff : forall m x y e, 
 ~ E.eq x y -> (In y (add x e m)  <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (add_3 H H0).
apply add_2; auto.
Qed.

Lemma remove_mapsto_iff : forall m x y e, 
  MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
Proof. 
intros.
split; intros.
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
apply remove_3 with x; auto.
apply remove_2; intuition.
Qed.

Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
Proof. 
unfold In; split.
intros (e,H).
split.
assert (In y (remove x m)) by (exists e; auto).
intro H1; apply (remove_1 H1 H0).
exists e; apply remove_3 with x; auto.
intros (H,(e,H0)); exists e; apply remove_2; auto.
Qed.

Lemma remove_neq_mapsto_iff : forall m x y e, 
 ~ E.eq x y -> (MapsTo y e (remove x m)  <-> MapsTo y e m).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.

Lemma remove_neq_in_iff : forall m x y, 
 ~ E.eq x y -> (In y (remove x m)  <-> In y m).
Proof.
split; intros (e',H0); exists e'.
apply (remove_3 H0).
apply remove_2; auto.
Qed.

Lemma elements_mapsto_iff : forall m x e, 
 MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
Proof. 
split; [apply elements_1 | apply elements_2].
Qed.

Lemma elements_in_iff : forall m x, 
 In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
Proof. 
unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
Qed.

Lemma map_mapsto_iff : forall m x b (f : elt -> elt'), 
 MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
Proof.
split.
case_eq (find x m); intros.
exists e.
split.
apply (MapsTo_fun (m:=map f m) (x:=x)); auto with map.
apply find_2; auto with map.
assert (In x (map f m)) by (exists b; auto).
destruct (map_2 H1) as (a,H2).
rewrite (find_1 H2) in H; discriminate.
intros (a,(H,H0)).
subst b; auto with map.
Qed.

Lemma map_in_iff : forall m x (f : elt -> elt'), 
 In x (map f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
exists (f a); auto with map.
Qed.

Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
 In x (mapi f m) <-> In x m.
Proof.
split; intros; eauto with map.
destruct H as (a,H).
destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.

(** Unfortunately, we don't have simple equivalences for [mapi] 
  and [MapsTo]. The only correct one needs compatibility of [f]. *) 

Lemma mapi_inv : forall m x b (f : key -> elt -> elt'), 
 MapsTo x b (mapi f m) -> 
 exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
Proof.
intros; case_eq (find x m); intros.
exists e.
destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
apply find_2; auto with map.
exists y; repeat split; auto with map.
apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto with map.
assert (In x (mapi f m)) by (exists b; auto).
destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
Qed.

Lemma mapi_1bis : forall m x e (f:key->elt->elt'), 
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 MapsTo x e m -> MapsTo x (f x e) (mapi f m).
Proof.
intros.
destruct (mapi_1 f H0) as (y,(H1,H2)).
replace (f x e) with (f y e) by auto.
auto.
Qed.

Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
Proof.
split.
intros.
destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
exists a; split; auto.
subst b; auto.
intros (a,(H0,H1)).
subst b.
apply mapi_1bis; auto.
Qed.

(** Things are even worse for [map2] : we don't try to state any 
 equivalence, see instead boolean results below. *)

End IffSpec.

(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
  
Ltac map_iff := 
 repeat (progress (
  rewrite add_mapsto_iff || rewrite add_in_iff ||
  rewrite remove_mapsto_iff || rewrite remove_in_iff ||
  rewrite empty_mapsto_iff || rewrite empty_in_iff ||
  rewrite map_mapsto_iff || rewrite map_in_iff ||
  rewrite mapi_in_iff)).

(** ** Specifications written using boolean predicates *)

Section BoolSpec.

Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false. 
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
destruct (find x m); destruct (mem x m); auto.
intros.
rewrite <- H0; exists e; rewrite H; auto.
intuition.
destruct H0 as (e,H0).
destruct (H e); intuition discriminate.
Qed.

Variable elt elt' elt'' : Type.
Implicit Types m : t elt.
Implicit Types x y z : key.
Implicit Types e : elt.

Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
Proof. 
intros.
generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
destruct (mem x m); destruct (mem y m); intuition.
Qed.

Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
Proof.
intros. rewrite eq_option_alt. intro e. rewrite <- 2 find_mapsto_iff.
apply MapsTo_iff; auto.
Qed.

Lemma empty_o : forall x, find x (empty elt) = None.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, empty_mapsto_iff; now intuition.
Qed.

Lemma empty_a : forall x, mem x (empty elt) = false.
Proof.
intros.
case_eq (mem x (empty elt)); intros; auto.
generalize (mem_2 H).
rewrite empty_in_iff; intuition.
Qed.

Lemma add_eq_o : forall m x y e, 
 E.eq x y -> find y (add x e m) = Some e.
Proof.
auto with map.
Qed.

Lemma add_neq_o : forall m x y e, 
 ~ E.eq x y -> find y (add x e m) = find y m. 
Proof.
intros. rewrite eq_option_alt. intro e'. rewrite <- 2 find_mapsto_iff.
apply add_neq_mapsto_iff; auto.
Qed.
Hint Resolve add_neq_o : map.

Lemma add_o : forall m x y e,
 find y (add x e m) = if eq_dec x y then Some e else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.

Lemma add_eq_b : forall m x y e, 
 E.eq x y -> mem y (add x e m) = true.
Proof.
intros; rewrite mem_find_b; rewrite add_eq_o; auto.
Qed.

Lemma add_neq_b : forall m x y e, 
 ~E.eq x y -> mem y (add x e m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
Qed.

Lemma add_b : forall m x y e, 
 mem y (add x e m) = eqb x y || mem y m. 
Proof.
intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
destruct (eq_dec x y); simpl; auto.
Qed.

Lemma remove_eq_o : forall m x y, 
 E.eq x y -> find y (remove x m) = None.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, remove_mapsto_iff; now intuition.
Qed.
Hint Resolve remove_eq_o : map.

Lemma remove_neq_o : forall m x y,
 ~ E.eq x y -> find y (remove x m) = find y m.
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, remove_neq_mapsto_iff; now intuition.
Qed.
Hint Resolve remove_neq_o : map.

Lemma remove_o : forall m x y,
 find y (remove x m) = if eq_dec x y then None else find y m.
Proof.
intros; destruct (eq_dec x y); auto with map.
Qed.

Lemma remove_eq_b : forall m x y,
 E.eq x y -> mem y (remove x m) = false.
Proof.
intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
Qed.

Lemma remove_neq_b : forall m x y,
 ~ E.eq x y -> mem y (remove x m) = mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
Qed.

Lemma remove_b : forall m x y,
 mem y (remove x m) = negb (eqb x y) && mem y m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.

Definition option_map (A B:Type)(f:A->B)(o:option A) : option B := 
 match o with 
  | Some a => Some (f a)
  | None => None
 end.

Lemma map_o : forall m x (f:elt->elt'), 
 find x (map f m) = option_map f (find x m). 
Proof.
intros.
generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
  (fun b => map_mapsto_iff m x b f).
destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
destruct (H e) as [_ H2].
rewrite H1 in H2.
destruct H2 as (a,(_,H2)); auto.
rewrite H0 in H2; discriminate.
rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
Qed.

Lemma map_b : forall m x (f:elt->elt'), 
 mem x (map f m) = mem x m.
Proof.
intros; do 2 rewrite mem_find_b; rewrite map_o.
destruct (find x m); simpl; auto.
Qed.

Lemma mapi_b : forall m x (f:key->elt->elt'), 
 mem x (mapi f m) = mem x m.
Proof.
intros.
generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
rewrite <- H; rewrite H1; rewrite H0; auto.
Qed.

Lemma mapi_o : forall m x (f:key->elt->elt'), 
 (forall x y e, E.eq x y -> f x e = f y e) -> 
 find x (mapi f m) = option_map (f x) (find x m).
Proof.
intros.
generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x) 
  (fun b => mapi_mapsto_iff m x b H).
destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
destruct (H0 e) as [_ H3].
rewrite H2 in H3.
destruct H3 as (a,(_,H3)); auto.
rewrite H1 in H3; discriminate.
rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
Qed.

Lemma map2_1bis : forall (m: t elt)(m': t elt') x 
 (f:option elt->option elt'->option elt''), 
 f None None = None -> 
 find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
case_eq (find x m); intros.
rewrite <- H0.
apply map2_1; auto with map.
left; exists e; auto with map.
case_eq (find x m'); intros.
rewrite <- H0; rewrite <- H1.
apply map2_1; auto.
right; exists e; auto with map.
rewrite H.
case_eq (find x (map2 f m m')); intros; auto with map.
assert (In x (map2 f m m')) by (exists e; auto with map).
destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
rewrite (find_1 H4) in H0; discriminate.
rewrite (find_1 H4) in H1; discriminate.
Qed.

Lemma elements_o : forall m x,
 find x m = findA (eqb x) (elements m).
Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, elements_mapsto_iff.
unfold eqb.
rewrite <- findA_NoDupA; intuition; try apply elements_3w; eauto.
Qed.

Lemma elements_b : forall m x,
 mem x m = existsb (fun p => eqb x (fst p)) (elements m).
Proof.
intros.
generalize (mem_in_iff m x)(elements_in_iff m x)
 (existsb_exists (fun p => eqb x (fst p)) (elements m)).
destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
symmetry; rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (e,He); [ intuition |].
rewrite InA_alt in He.
destruct He as ((y,e'),(Ha1,Ha2)).
compute in Ha1; destruct Ha1; subst e'.
exists (y,e); split; simpl; auto.
unfold eqb; destruct (eq_dec x y); intuition.
rewrite <- H; rewrite H0.
destruct H1 as (H1,_).
destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
simpl in Ha2.
unfold eqb in *; destruct (eq_dec x y); auto; try discriminate.
exists e; rewrite InA_alt.
exists (y,e); intuition.
compute; auto.
Qed.

End BoolSpec.

Section Equalities.

Variable elt:Type.

 (** Another characterisation of [Equal] *)

Lemma Equal_mapsto_iff : forall m1 m2 : t elt,
 Equal m1 m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2).
Proof.
intros m1 m2. split; [intros Heq k e|intros Hiff].
rewrite 2 find_mapsto_iff, Heq. split; auto.
intro k. rewrite eq_option_alt. intro e.
rewrite <- 2 find_mapsto_iff; auto.
Qed.

(** * Relations between [Equal], [Equiv] and [Equivb]. *)

(** First, [Equal] is [Equiv] with Leibniz on elements. *)

Lemma Equal_Equiv : forall (m m' : t elt),
  Equal m m' <-> Equiv (@Logic.eq elt) m m'.
Proof.
intros. rewrite Equal_mapsto_iff. split; intros.
split.
split; intros (e,Hin); exists e; [rewrite <- H|rewrite H]; auto.
intros; apply MapsTo_fun with m k; auto; rewrite H; auto.
split; intros H'.
destruct H.
assert (Hin : In k m') by (rewrite <- H; exists e; auto).
destruct Hin as (e',He').
rewrite (H0 k e e'); auto.
destruct H.
assert (Hin : In k m) by (rewrite H; exists e; auto).
destruct Hin as (e',He').
rewrite <- (H0 k e' e); auto.
Qed.

(** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp]
    are related. *)

Section Cmp.
Variable eq_elt : elt->elt->Prop.
Variable cmp : elt->elt->bool.

Definition compat_cmp := 
 forall e e', cmp e e' = true <-> eq_elt e e'.

Lemma Equiv_Equivb : compat_cmp ->
 forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'.
Proof.
 unfold Equivb, Equiv, Cmp; intuition.
 red in H; rewrite H; eauto.
 red in H; rewrite <-H; eauto.
Qed.
End Cmp.

(** Composition of the two last results: relation between [Equal]
    and [Equivb]. *)

Lemma Equal_Equivb : forall cmp, 
 (forall e e', cmp e e' = true <-> e = e') -> 
 forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
 intros; rewrite Equal_Equiv.
 apply Equiv_Equivb; auto.
Qed.

Lemma Equal_Equivb_eqdec : 
 forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }),
 let cmp := fun e e' => if eq_elt_dec e e' then true else false in 
 forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
Proof.
intros; apply Equal_Equivb.
unfold cmp; clear cmp; intros.
destruct eq_elt_dec; now intuition.
Qed.

End Equalities.

(** * [Equal] is a setoid equality. *)

Lemma Equal_refl : forall (elt:Type)(m : t elt), Equal m m.
Proof. red; reflexivity. Qed.

Lemma Equal_sym : forall (elt:Type)(m m' : t elt), 
 Equal m m' -> Equal m' m.
Proof. unfold Equal; auto. Qed.

Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt), 
 Equal m m' -> Equal m' m'' -> Equal m m''.
Proof. unfold Equal; congruence. Qed.

Definition Equal_ST : forall elt:Type, Equivalence (@Equal elt).
Proof.
constructor; red; [apply Equal_refl | apply Equal_sym | apply Equal_trans].
Qed.

Add Relation key E.eq 
 reflexivity proved by E.eq_refl 
 symmetry proved by E.eq_sym
 transitivity proved by E.eq_trans 
 as KeySetoid.

Implicit Arguments Equal [[elt]].

Add Parametric Relation (elt : Type) : (t elt) Equal  
 reflexivity proved by (@Equal_refl elt)
 symmetry proved by (@Equal_sym elt)
 transitivity proved by (@Equal_trans elt)
 as EqualSetoid.

Add Parametric Morphism elt : (@In elt)
 with signature E.eq ==> Equal ==> iff as In_m.
Proof.
unfold Equal; intros k k' Hk m m' Hm.
rewrite (In_iff m Hk), in_find_iff, in_find_iff, Hm; intuition.
Qed.

Add Parametric Morphism elt : (@MapsTo elt)
 with signature E.eq ==> Leibniz ==> Equal ==> iff as MapsTo_m.
Proof.
unfold Equal; intros k k' Hk e m m' Hm.
rewrite (MapsTo_iff m e Hk), find_mapsto_iff, find_mapsto_iff, Hm;
 intuition.
Qed.

Add Parametric Morphism elt : (@Empty elt)
 with signature Equal ==> iff as Empty_m.
Proof.
unfold Empty; intros m m' Hm; intuition.
rewrite <-Hm in H0; eauto.
rewrite Hm in H0; eauto.
Qed.

Add Parametric Morphism elt : (@is_empty elt)
 with signature Equal ==> Leibniz as is_empty_m.
Proof.
intros m m' Hm.
rewrite eq_bool_alt, <-is_empty_iff, <-is_empty_iff, Hm; intuition.
Qed.

Add Parametric Morphism elt : (@mem elt)
 with signature E.eq ==> Equal ==> Leibniz as mem_m.
Proof.
intros k k' Hk m m' Hm.
rewrite eq_bool_alt, <- mem_in_iff, <-mem_in_iff, Hk, Hm; intuition.
Qed.

Add Parametric Morphism elt : (@find elt)
 with signature E.eq ==> Equal ==> Leibniz as find_m.
Proof.
intros k k' Hk m m' Hm. rewrite eq_option_alt. intro e.
rewrite <- 2 find_mapsto_iff, Hk, Hm. split; auto.
Qed.

Add Parametric Morphism elt : (@add elt)
 with signature E.eq ==> Leibniz ==> Equal ==> Equal as add_m.
Proof.
intros k k' Hk e m m' Hm y.
rewrite add_o, add_o; do 2 destruct eq_dec; auto.
elim n; rewrite <-Hk; auto.
elim n; rewrite Hk; auto.
Qed.

Add Parametric Morphism elt : (@remove elt)
 with signature E.eq ==> Equal ==> Equal as remove_m.
Proof.
intros k k' Hk m m' Hm y.
rewrite remove_o, remove_o; do 2 destruct eq_dec; auto.
elim n; rewrite <-Hk; auto.
elim n; rewrite Hk; auto.
Qed.

Add Parametric Morphism elt elt' : (@map elt elt')
 with signature Leibniz ==> Equal ==> Equal as map_m.
Proof.
intros f m m' Hm y.
rewrite map_o, map_o, Hm; auto.
Qed.

(* Later: Add Morphism cardinal *)

(* old name: *)
Notation not_find_mapsto_iff := not_find_in_iff.

End WFacts_fun.

(** * Same facts for self-contained weak sets and for full maps *)

Module WFacts (M:S) := WFacts_fun M.E M.
Module Facts := WFacts.

(** * Additional Properties for weak maps

    Results about [fold], [elements], induction principles...
*)

Module WProperties_fun (E:DecidableType)(M:WSfun E).
 Module Import F:=WFacts_fun E M.
 Import M.

 Section Elt.
  Variable elt:Type.

  Definition Add x (e:elt) m m' := forall y, find y m' = find y (add x e m).

  Notation eqke := (@eq_key_elt elt).
  Notation eqk := (@eq_key elt).

  (** Complements about InA, NoDupA and findA *)

  Lemma InA_eqke_eqk : forall k1 k2 e1 e2 l,
    E.eq k1 k2 -> InA eqke (k1,e1) l -> InA eqk (k2,e2) l.
  Proof.
  intros k1 k2 e1 e2 l Hk. rewrite 2 InA_alt.
  intros ((k',e') & (Hk',He') & H); simpl in *.
  exists (k',e'); split; auto.
  red; simpl; eauto.
  Qed.

  Lemma NoDupA_eqk_eqke : forall l, NoDupA eqk l -> NoDupA eqke l.
  Proof.
  induction 1; auto.
  constructor; auto.
  destruct x as (k,e).
  eauto using InA_eqke_eqk.
  Qed.

  Lemma findA_rev : forall l k, NoDupA eqk l ->
    findA (eqb k) l = findA (eqb k) (rev l).
  Proof.
  intros.
  case_eq (findA (eqb k) l).
  intros. symmetry.
  unfold eqb.
  rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
   by eauto using NoDupA_rev; eauto.
  case_eq (findA (eqb k) (rev l)); auto.
  intros e.
  unfold eqb.
  rewrite <- findA_NoDupA, InA_rev, findA_NoDupA
   by eauto using NoDupA_rev.
  intro Eq; rewrite Eq; auto.
  Qed.

  (** * Elements *)

  Lemma elements_Empty : forall m:t elt, Empty m <-> elements m = nil.
  Proof.
  intros.
  unfold Empty.
  split; intros.
  assert (forall a, ~ List.In a (elements m)).
   red; intros.
   apply (H (fst a) (snd a)).
   rewrite elements_mapsto_iff.
   rewrite InA_alt; exists a; auto.
   split; auto; split; auto.
  destruct (elements m); auto.
  elim (H0 p); simpl; auto.
  red; intros.
  rewrite elements_mapsto_iff in H0.
  rewrite InA_alt in H0; destruct H0.
  rewrite H in H0; destruct H0 as (_,H0); inversion H0.
  Qed.

  Lemma elements_empty : elements (@empty elt) = nil.
  Proof.
  rewrite <-elements_Empty; apply empty_1.
  Qed.

  (** * Conversions between maps and association lists. *)

  Definition of_list (l : list (key*elt)) :=
    List.fold_right (fun p => add (fst p) (snd p)) (empty _) l.

  Definition to_list := elements.

  Lemma of_list_1 : forall l k e,
    NoDupA eqk l ->
    (MapsTo k e (of_list l) <-> InA eqke (k,e) l).
  Proof.
  induction l as [|(k',e') l IH]; simpl; intros k e Hnodup.
  rewrite empty_mapsto_iff, InA_nil; intuition.
  inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
  specialize (IH k e Hnodup'); clear Hnodup'.
  rewrite add_mapsto_iff, InA_cons, <- IH.
  unfold eq_key_elt at 1; simpl.
  split; destruct 1 as [H|H]; try (intuition;fail).
  destruct (eq_dec k k'); [left|right]; split; auto.
  contradict Hnotin.
  apply InA_eqke_eqk with k e; intuition.
  Qed.

  Lemma of_list_1b : forall l k,
    NoDupA eqk l ->
    find k (of_list l) = findA (eqb k) l.
  Proof.
  induction l as [|(k',e') l IH]; simpl; intros k Hnodup.
  apply empty_o.
  inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
  specialize (IH k Hnodup'); clear Hnodup'.
  rewrite add_o, IH.
  unfold eqb; do 2 destruct eq_dec; auto; elim n; eauto.
  Qed.

  Lemma of_list_2 : forall l, NoDupA eqk l ->
    equivlistA eqke l (to_list (of_list l)).
  Proof.
  intros l Hnodup (k,e).
  rewrite <- elements_mapsto_iff, of_list_1; intuition.
  Qed.

  Lemma of_list_3 : forall s, Equal (of_list (to_list s)) s.
  Proof.
  intros s k.
  rewrite of_list_1b, elements_o; auto.
  apply elements_3w.
  Qed.

  (** * Fold *)

  (** ** Induction principles about fold contributed by S. Lescuyer *)

  (** In the following lemma, the step hypothesis is deliberately restricted
      to the precise map m we are considering. *)

  Lemma fold_rec :
    forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
     forall (i:A)(m:t elt),
      (forall m, Empty m -> P m i) ->
      (forall k e a m' m'', MapsTo k e m -> ~In k m' ->
         Add k e m' m'' -> P m' a -> P m'' (f k e a)) ->
      P m (fold f m i).
  Proof.
  intros A P f i m Hempty Hstep.
  rewrite fold_1, <- fold_left_rev_right.
  set (F:=fun (y : key * elt) (x : A) => f (fst y) (snd y) x).
  set (l:=rev (elements m)).
  assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' ->
             Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)).
   intros k e a m' m'' H ? ? ?; eapply Hstep; eauto.
   revert H; unfold l; rewrite InA_rev, elements_mapsto_iff; auto.
  assert (Hdup : NoDupA eqk l).
   unfold l. apply NoDupA_rev; try red; eauto. apply elements_3w.
  assert (Hsame : forall k, find k m = findA (eqb k) l).
   intros k. unfold l. rewrite elements_o, findA_rev; auto.
   apply elements_3w.
  clearbody l. clearbody F. clear Hstep f. revert m Hsame. induction l.
  (* empty *)
  intros m Hsame; simpl.
  apply Hempty. intros k e.
  rewrite find_mapsto_iff, Hsame; simpl; discriminate.
  (* step *)
  intros m Hsame; destruct a as (k,e); simpl.
  apply Hstep' with (of_list l); auto.
   rewrite InA_cons; left; red; auto.
   inversion_clear Hdup. contradict H. destruct H as (e',He').
   apply InA_eqke_eqk with k e'; auto.
   rewrite <- of_list_1; auto.
   intro k'. rewrite Hsame, add_o, of_list_1b. simpl.
   unfold eqb. do 2 destruct eq_dec; auto; elim n; eauto.
   inversion_clear Hdup; auto.
  apply IHl.
   intros; eapply Hstep'; eauto.
   inversion_clear Hdup; auto.
   intros; apply of_list_1b. inversion_clear Hdup; auto.
  Qed.

  (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
      case, [P] must be compatible with equality of sets *)

  Theorem fold_rec_bis :
    forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
     forall (i:A)(m:t elt),
     (forall m m' a, Equal m m' -> P m a -> P m' a) ->
     (P (empty _) i) ->
     (forall k e a m', MapsTo k e m -> ~In k m' ->
       P m' a -> P (add k e m') (f k e a)) ->
     P m (fold f m i).
  Proof.
  intros A P f i m Pmorphism Pempty Pstep.
  apply fold_rec; intros.
  apply Pmorphism with (empty _); auto. intro k. rewrite empty_o.
  case_eq (find k m0); auto; intros e'; rewrite <- find_mapsto_iff.
  intro H'; elim (H k e'); auto.
  apply Pmorphism with (add k e m'); try intro; auto.
  Qed.

  Lemma fold_rec_nodep :
    forall (A:Type)(P : A -> Type)(f : key -> elt -> A -> A)(i:A)(m:t elt),
     P i -> (forall k e a, MapsTo k e m -> P a -> P (f k e a)) ->
     P (fold f m i).
  Proof.
  intros; apply fold_rec_bis with (P:=fun _ => P); auto.
  Qed.

  (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
      the step hypothesis must here be applicable anywhere.
      At the same time, it looks more like an induction principle,
      and hence can be easier to use. *)

  Lemma fold_rec_weak :
    forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A)(i:A),
    (forall m m' a, Equal m m' -> P m a -> P m' a) ->
    P (empty _) i ->
    (forall k e a m, ~In k m -> P m a -> P (add k e m) (f k e a)) ->
    forall m, P m (fold f m i).
  Proof.
  intros; apply fold_rec_bis; auto.
  Qed.

  Lemma fold_rel :
    forall (A B:Type)(R : A -> B -> Type)
     (f : key -> elt -> A -> A)(g : key -> elt -> B -> B)(i : A)(j : B)
     (m : t elt),
     R i j ->
     (forall k e a b, MapsTo k e m -> R a b -> R (f k e a) (g k e b)) ->
     R (fold f m i) (fold g m j).
  Proof.
  intros A B R f g i j m Rempty Rstep.
  do 2 rewrite fold_1, <- fold_left_rev_right.
  set (l:=rev (elements m)).
  assert (Rstep' : forall k e a b, InA eqke (k,e) l ->
    R a b -> R (f k e a) (g k e b)) by
    (intros; apply Rstep; auto; rewrite elements_mapsto_iff, <- InA_rev; auto).
  clearbody l; clear Rstep m.
  induction l; simpl; auto.
  apply Rstep'; auto.
  destruct a; simpl; rewrite InA_cons; left; red; auto.
  Qed.

  (** From the induction principle on [fold], we can deduce some general
      induction principles on maps. *)

  Lemma map_induction :
   forall P : t elt -> Type,
   (forall m, Empty m -> P m) ->
   (forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') ->
   forall m, P m.
  Proof.
  intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
  Qed.

  Lemma map_induction_bis :
   forall P : t elt -> Type,
   (forall m m', Equal m m' -> P m -> P m') ->
   P (empty _) ->
   (forall x e m, ~In x m -> P m -> P (add x e m)) ->
   forall m, P m.
  Proof.
  intros.
  apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
  Qed.

  (** [fold] can be used to reconstruct the same initial set. *)

  Lemma fold_identity : forall m : t elt, Equal (fold (@add _) m (empty _)) m.
  Proof.
  intros.
  apply fold_rec with (P:=fun m acc => Equal acc m); auto with map.
  intros m' Heq k'.
  rewrite empty_o.
  case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff.
  intro; elim (Heq k' e'); auto.
  intros k e a m' m'' _ _ Hadd Heq k'.
  rewrite Hadd, 2 add_o, Heq; auto.
  Qed.

  Section Fold_More.

  (** ** Additional properties of fold *)

  (** When a function [f] is compatible and allows transpositions, we can
      compute [fold f] in any order. *)

  Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A).

  (** This is more convenient than a [compat_op eqke ...].
      In fact, every [compat_op], [compat_bool], etc, should
      become a [Morphism] someday. *)
  Hypothesis Comp : Morphism (E.eq==>Leibniz==>eqA==>eqA) f.

  Lemma fold_init :
   forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i').
  Proof.
  intros. apply fold_rel with (R:=eqA); auto.
  intros. apply Comp; auto.
  Qed.

  Lemma fold_Empty :
   forall m i, Empty m -> eqA (fold f m i) i.
  Proof.
  intros. apply fold_rec_nodep with (P:=fun a => eqA a i).
  reflexivity.
  intros. elim (H k e); auto.
  Qed.

  (** As noticed by P. Casteran, asking for the general [SetoidList.transpose]
      here is too restrictive. Think for instance of [f] being [M.add] :
      in general, [M.add k e (M.add k e' m)] is not equivalent to
      [M.add k e' (M.add k e m)]. Fortunately, we will never encounter this
      situation during a real [fold], since the keys received by this [fold]
      are unique. Hence we can ask the transposition property to hold only
      for non-equal keys.

      This idea could be push slightly further, by asking the transposition
      property to hold only for (non-equal) keys living in the map given to
      [fold]. Please contact us if you need such a version.

      FSets could also benefit from a restricted [transpose], but for this
      case the gain is unclear. *)

  Definition transpose_neqkey :=
    forall k k' e e' a, ~E.eq k k' ->
      eqA (f k e (f k' e' a)) (f k' e' (f k e a)).

  Hypothesis Tra : transpose_neqkey.

  Lemma fold_commutes : forall i m k e, ~In k m ->
   eqA (fold f m (f k e i)) (f k e (fold f m i)).
  Proof.
  intros i m k e Hnotin.
  apply fold_rel with (R:= fun a b => eqA a (f k e b)); auto.
  reflexivity.
  intros.
  transitivity (f k0 e0 (f k e b)).
  apply Comp; auto.
  apply Tra; auto.
  contradict Hnotin; rewrite <- Hnotin; exists e0; auto.
  Qed.

  Lemma fold_Equal : forall m1 m2 i, Equal m1 m2 ->
   eqA (fold f m1 i) (fold f m2 i).
  Proof.
  assert (eqke_refl : forall p, eqke p p).
   red; auto.
  assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
   intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
  assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
   intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
   intuition; eauto; congruence.
  intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
  apply fold_right_equivlistA_restr with
    (R:=fun p p' => ~eqk p p') (eqA:=eqke) (eqB:=eqA); auto.
  intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; simpl in *; apply Comp; auto.
  unfold eq_key; auto.
  intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl.
   intuition eauto.
  intros (k,e) (k',e'); unfold eq_key; simpl; auto.
  apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
  apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
  apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto.
  apply NoDupA_rev; try red; eauto. apply elements_3w.
  red; intros.
  do 2 rewrite InA_rev.
  destruct x; do 2 rewrite <- elements_mapsto_iff.
  do 2 rewrite find_mapsto_iff.
  rewrite H; split; auto.
  Qed.

  Lemma fold_Add : forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 ->
   eqA (fold f m2 i) (f k e (fold f m1 i)).
  Proof.
  assert (eqke_refl : forall p, eqke p p).
   red; auto.
  assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
   intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
  assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
   intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
   intuition; eauto; congruence.
  intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
  set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
  change (f k e (fold_right f' i (rev (elements m1))))
   with (f' (k,e) (fold_right f' i (rev (elements m1)))).
  apply fold_right_add_restr with
    (R:=fun p p'=>~eqk p p')(eqA:=eqke)(eqB:=eqA); auto.
  intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *. apply Comp; auto.

  unfold eq_key; auto.
  intros (k1,e1) (k2,e2) (k3,e3). unfold eq_key_elt, eq_key; simpl.
   intuition eauto.
  unfold f'; intros (k1,e1) (k2,e2); unfold eq_key; simpl; auto.
  apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
  apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
  apply ForallList2_equiv1 with (eqA:=eqk); try red; eauto.
  apply NoDupA_rev; try red; eauto. apply elements_3w.
  rewrite InA_rev.
  contradict H.
  exists e.
  rewrite elements_mapsto_iff; auto.
  intros a.
  rewrite InA_cons; do 2 rewrite InA_rev;
  destruct a as (a,b); do 2 rewrite <- elements_mapsto_iff.
  do 2 rewrite find_mapsto_iff; unfold eq_key_elt; simpl.
  rewrite H0.
  rewrite add_o.
  destruct (eq_dec k a); intuition.
  inversion H1; auto.
  f_equal; auto.
  elim H.
  exists b; apply MapsTo_1 with a; auto with map.
  elim n; auto.
  Qed.

  Lemma fold_add : forall m k e i, ~In k m ->
   eqA (fold f (add k e m) i) (f k e (fold f m i)).
  Proof.
  intros. apply fold_Add; try red; auto.
  Qed.

  End Fold_More.

  (** * Cardinal *)

  Lemma cardinal_fold : forall m : t elt,
   cardinal m = fold (fun _ _ => S) m 0.
  Proof.
  intros; rewrite cardinal_1, fold_1.
  symmetry; apply fold_left_length; auto.
  Qed.

  Lemma cardinal_Empty : forall m : t elt,
   Empty m <-> cardinal m = 0.
  Proof.
  intros.
  rewrite cardinal_1, elements_Empty.
  destruct (elements m); intuition; discriminate.
  Qed.

  Lemma Equal_cardinal : forall m m' : t elt,
    Equal m m' -> cardinal m = cardinal m'.
  Proof.
  intros; do 2 rewrite cardinal_fold.
  apply fold_Equal with (eqA:=Leibniz); compute; auto.
  Qed.

  Lemma cardinal_1 : forall m : t elt, Empty m -> cardinal m = 0.
  Proof.
  intros; rewrite <- cardinal_Empty; auto.
  Qed.

  Lemma cardinal_2 :
    forall m m' x e, ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m).
  Proof.
  intros; do 2 rewrite cardinal_fold.
  change S with ((fun _ _ => S) x e).
  apply fold_Add with (eqA:=Leibniz); compute; auto.
  Qed.

  Lemma cardinal_inv_1 : forall m : t elt, 
   cardinal m = 0 -> Empty m.
  Proof.
  intros; rewrite cardinal_Empty; auto. 
  Qed.
  Hint Resolve cardinal_inv_1 : map.

  Lemma cardinal_inv_2 :
   forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
  Proof. 
  intros; rewrite M.cardinal_1 in *.
  generalize (elements_mapsto_iff m).
  destruct (elements m); try discriminate. 
  exists p; auto.
  rewrite H0; destruct p; simpl; auto.
  constructor; red; auto.
  Qed.

  Lemma cardinal_inv_2b :
   forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }.
  Proof.
  intros.
  generalize (@cardinal_inv_2 m); destruct cardinal.
  elim H;auto.
  eauto.
  Qed.

  (** * Additional notions over maps *)

  Definition Disjoint (m m' : t elt) :=
   forall k, ~(In k m /\ In k m').

  Definition Partition (m m1 m2 : t elt) :=
    Disjoint m1 m2 /\
    (forall k e, MapsTo k e m <-> MapsTo k e m1 \/ MapsTo k e m2).

  (** * Emulation of some functions lacking in the interface *)

  Definition filter (f : key -> elt -> bool)(m : t elt) := 
   fold (fun k e m => if f k e then add k e m else m) m (empty _).

  Definition for_all (f : key -> elt -> bool)(m : t elt) := 
   fold (fun k e b => if f k e then b else false) m true.

  Definition exists_ (f : key -> elt -> bool)(m : t elt) := 
   fold (fun k e b => if f k e then true else b) m false.

  Definition partition (f : key -> elt -> bool)(m : t elt) := 
   (filter f m, filter (fun k e => negb (f k e)) m).

  (** [update] adds to [m1] all the bindings of [m2]. It can be seen as
     an [union] operator which gives priority to its 2nd argument
     in case of binding conflit. *)

  Definition update (m1 m2 : t elt) := fold (@add _) m2 m1.

  (** [restrict] keeps from [m1] only the bindings whose key is in [m2].
      It can be seen as an [inter] operator, with priority to its 1st argument
      in case of binding conflit. *)

  Definition restrict (m1 m2 : t elt) := filter (fun k _ => mem k m2) m1.

  (** [diff] erases from [m1] all bindings whose key is in [m2]. *)

  Definition diff (m1 m2 : t elt) := filter (fun k _ => negb (mem k m2)) m1.

  Section Specs.
  Variable f : key -> elt -> bool.
  Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f.

  Lemma filter_iff : forall m k e,
   MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true.
  Proof.
  unfold filter.
  set (f':=fun k e m => if f k e then add k e m else m).
  intro m. pattern m, (fold f' m (empty _)). apply fold_rec.

  intros m' Hm' k e. rewrite empty_mapsto_iff. intuition.
  elim (Hm' k e); auto.

  intros k e acc m1 m2 Hke Hn Hadd IH k' e'.
  change (Equal m2 (add k e m1)) in Hadd; rewrite Hadd.
  unfold f'; simpl.
  case_eq (f k e); intros Hfke; simpl;
   rewrite !add_mapsto_iff, IH; clear IH; intuition.
  rewrite <- Hfke; apply Hf; auto.
  destruct (eq_dec k k') as [Hk|Hk]; [left|right]; auto.
  elim Hn; exists e'; rewrite Hk; auto.
  assert (f k e = f k' e') by (apply Hf; auto). congruence.
  Qed.

  Lemma for_all_iff : forall m,
   for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true).
  Proof.
  unfold for_all.
  set (f':=fun k e b => if f k e then b else false).
  intro m. pattern m, (fold f' m true). apply fold_rec.

  intros m' Hm'. split; auto. intros _ k e Hke. elim (Hm' k e); auto.

  intros k e b m1 m2 _ Hn Hadd IH. clear m.
  change (Equal m2 (add k e m1)) in Hadd.
  unfold f'; simpl. case_eq (f k e); intros Hfke.
  (* f k e = true *)
  rewrite IH. clear IH. split; intros Hmapsto k' e' Hke'.
  rewrite Hadd, add_mapsto_iff in Hke'.
  destruct Hke' as [(?,?)|(?,?)]; auto.
  rewrite <- Hfke; apply Hf; auto.
  apply Hmapsto. rewrite Hadd, add_mapsto_iff; right; split; auto.
  contradict Hn; exists e'; rewrite Hn; auto.
  (* f k e = false *)
  split; intros H; try discriminate.
  rewrite <- Hfke. apply H.
  rewrite Hadd, add_mapsto_iff; auto.
  Qed.

  Lemma exists_iff : forall m,
   exists_ f m = true <->
   (exists p, MapsTo (fst p) (snd p) m /\ f (fst p) (snd p) = true).
  Proof.
  unfold exists_.
  set (f':=fun k e b => if f k e then true else b).
  intro m. pattern m, (fold f' m false). apply fold_rec.

  intros m' Hm'. split; try (intros; discriminate).
  intros ((k,e),(Hke,_)); simpl in *. elim (Hm' k e); auto.

  intros k e b m1 m2 _ Hn Hadd IH. clear m.
  change (Equal m2 (add k e m1)) in Hadd.
  unfold f'; simpl. case_eq (f k e); intros Hfke.
  (* f k e = true *)
  split; [intros _|auto].
  exists (k,e); simpl; split; auto.
  rewrite Hadd, add_mapsto_iff; auto.
  (* f k e = false *)
  rewrite IH. clear IH. split; intros ((k',e'),(Hke1,Hke2)); simpl in *.
  exists (k',e'); simpl; split; auto.
  rewrite Hadd, add_mapsto_iff; right; split; auto.
  contradict Hn. exists e'; rewrite Hn; auto.
  rewrite Hadd, add_mapsto_iff in Hke1. destruct Hke1 as [(?,?)|(?,?)].
  assert (f k' e' = f k e) by (apply Hf; auto). congruence.
  exists (k',e'); auto.
  Qed.

  End Specs.

  Lemma Disjoint_alt : forall m m',
   Disjoint m m' <->
   (forall k e e', MapsTo k e m -> MapsTo k e' m' -> False).
  Proof.
  unfold Disjoint; split.
  intros H k v v' H1 H2.
  apply H with k; split.
  exists v; trivial.
  exists v'; trivial.
  intros H k ((v,Hv),(v',Hv')).
  eapply H; eauto.
  Qed.

  Section Partition.
  Variable f : key -> elt -> bool.
  Hypothesis Hf : Morphism (E.eq==>Leibniz==>Leibniz) f.

  Lemma partition_iff_1 : forall m m1 k e,
   m1 = fst (partition f m) ->
   (MapsTo k e m1 <-> MapsTo k e m /\ f k e = true).
  Proof.
  unfold partition; simpl; intros. subst m1.
  apply filter_iff; auto.
  Qed.

  Lemma partition_iff_2 : forall m m2 k e,
   m2 = snd (partition f m) ->
   (MapsTo k e m2 <-> MapsTo k e m /\ f k e = false).
  Proof.
  unfold partition; simpl; intros. subst m2.
  rewrite filter_iff.
  split; intros (H,H'); split; auto.
  destruct (f k e); simpl in *; auto.
  rewrite H'; auto.
  repeat red; intros. f_equal. apply Hf; auto.
  Qed.

  Lemma partition_Partition : forall m m1 m2,
   partition f m = (m1,m2) -> Partition m m1 m2.
  Proof.
  intros. split.
  rewrite Disjoint_alt. intros k e e'.
  rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
   by (rewrite H; auto).
  intros (U,V) (W,Z). rewrite <- (MapsTo_fun U W) in Z; congruence.
  intros k e.
  rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
   by (rewrite H; auto).
  destruct (f k e); intuition.
  Qed.

  End Partition.

  Lemma Partition_In : forall m m1 m2 k,
   Partition m m1 m2 -> In k m -> {In k m1}+{In k m2}.
  Proof.
  intros m m1 m2 k Hm Hk.
  destruct (In_dec m1 k) as [H|H]; [left|right]; auto.
  destruct Hm as (Hm,Hm').
  destruct Hk as (e,He); rewrite Hm' in He; destruct He.
  elim H; exists e; auto.
  exists e; auto.
  Defined.

  Lemma Disjoint_sym : forall m1 m2, Disjoint m1 m2 -> Disjoint m2 m1.
  Proof.
  intros m1 m2 H k (H1,H2). elim (H k); auto.
  Qed.

  Lemma Partition_sym : forall m m1 m2,
   Partition m m1 m2 -> Partition m m2 m1.
  Proof.
  intros m m1 m2 (H,H'); split.
  apply Disjoint_sym; auto.
  intros; rewrite H'; intuition.
  Qed.

  Lemma Partition_Empty : forall m m1 m2, Partition m m1 m2 ->
   (Empty m <-> (Empty m1 /\ Empty m2)).
  Proof.
  intros m m1 m2 (Hdisj,Heq). split.
  intro He.
  split; intros k e Hke; elim (He k e); rewrite Heq; auto.
  intros (He1,He2) k e Hke. rewrite Heq in Hke. destruct Hke.
  elim (He1 k e); auto.
  elim (He2 k e); auto.
  Qed.

  Lemma Partition_Add :
    forall m m' x e , ~In x m -> Add x e m m' ->
    forall m1 m2, Partition m' m1 m2 ->
     exists m3, (Add x e m3 m1 /\ Partition m m3 m2 \/
                 Add x e m3 m2 /\ Partition m m1 m3).
  Proof.
  unfold Partition. intros m m' x e Hn Hadd m1 m2 (Hdisj,Hor).
  assert (Heq : Equal m (remove x m')).
   change (Equal m' (add x e m)) in Hadd. rewrite Hadd.
   intro k. rewrite remove_o, add_o.
   destruct eq_dec as [He|Hne]; auto.
   rewrite <- He, <- not_find_in_iff; auto.
  assert (H : MapsTo x e m').
   change (Equal m' (add x e m)) in Hadd; rewrite Hadd.
   apply add_1; auto.
  rewrite Hor in H; destruct H.

  (* first case : x in m1 *)
  exists (remove x m1); left. split; [|split].
  (* add *)
  change (Equal m1 (add x e (remove x m1))).
  intro k.
  rewrite add_o, remove_o.
  destruct eq_dec as [He|Hne]; auto.
  rewrite <- He; apply find_1; auto.
  (* disjoint *)
  intros k (H1,H2). elim (Hdisj k). split; auto.
  rewrite remove_in_iff in H1; destruct H1; auto.
  (* mapsto *)
  intros k' e'.
  rewrite Heq, 2 remove_mapsto_iff, Hor.
  intuition.
  elim (Hdisj x); split; [exists e|exists e']; auto.
  apply MapsTo_1 with k'; auto.

  (* second case : x in m2 *)
  exists (remove x m2); right. split; [|split].
  (* add *)
  change (Equal m2 (add x e (remove x m2))).
  intro k.
  rewrite add_o, remove_o.
  destruct eq_dec as [He|Hne]; auto.
  rewrite <- He; apply find_1; auto.
  (* disjoint *)
  intros k (H1,H2). elim (Hdisj k). split; auto.
  rewrite remove_in_iff in H2; destruct H2; auto.
  (* mapsto *)
  intros k' e'.
  rewrite Heq, 2 remove_mapsto_iff, Hor.
  intuition.
  elim (Hdisj x); split; [exists e'|exists e]; auto.
  apply MapsTo_1 with k'; auto.
  Qed.

  Lemma Partition_fold :
   forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A),
   Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
   transpose_neqkey eqA f ->
   forall m m1 m2 i,
   Partition m m1 m2 ->
   eqA (fold f m i) (fold f m1 (fold f m2 i)).
  Proof.
  intros A eqA st f Comp Tra.
  induction m as [m Hm|m m' IH k e Hn Hadd] using map_induction.

  intros m1 m2 i Hp. rewrite (fold_Empty (eqA:=eqA)); auto.
  rewrite (Partition_Empty Hp) in Hm. destruct Hm.
  rewrite 2 (fold_Empty (eqA:=eqA)); auto. reflexivity.

  intros m1 m2 i Hp.
  destruct (Partition_Add Hn Hadd Hp) as (m3,[(Hadd',Hp')|(Hadd',Hp')]).
  (* fst case: m3 is (k,e)::m1 *)
  assert (~In k m3).
   contradict Hn. destruct Hn as (e',He').
   destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
  transitivity (f k e (fold f m i)).
  apply fold_Add with (eqA:=eqA); auto.
  symmetry.
  transitivity (f k e (fold f m3 (fold f m2 i))).
  apply fold_Add with (eqA:=eqA); auto.
  apply Comp; auto.
  symmetry; apply IH; auto.
  (* snd case: m3 is (k,e)::m2 *)
  assert (~In k m3).
   contradict Hn. destruct Hn as (e',He').
   destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
  assert (~In k m1).
   contradict Hn. destruct Hn as (e',He').
   destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto.
  transitivity (f k e (fold f m i)).
  apply fold_Add with (eqA:=eqA); auto.
  transitivity (f k e (fold f m1 (fold f m3 i))).
  apply Comp; auto using IH.
  transitivity (fold f m1 (f k e (fold f m3 i))).
  symmetry.
  apply fold_commutes with (eqA:=eqA); auto.
  apply fold_init with (eqA:=eqA); auto.
  symmetry.
  apply fold_Add with (eqA:=eqA); auto.
  Qed.

  Lemma Partition_cardinal : forall m m1 m2, Partition m m1 m2 ->
   cardinal m = cardinal m1 + cardinal m2.
  Proof.
  intros.
  rewrite (cardinal_fold m), (cardinal_fold m1).
  set (f:=fun (_:key)(_:elt)=>S).
  setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)).
  rewrite <- cardinal_fold.
  intros. apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto.
  apply Partition_fold with (eqA:=@Logic.eq _); try red; auto.
  compute; auto.
  Qed.

  Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 ->
    let f := fun k (_:elt) => mem k m1 in
   Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)).
  Proof.
  intros m m1 m2 Hm f.
  assert (Hf : Morphism (E.eq==>Leibniz==>Leibniz) f).
   intros k k' Hk e e' _; unfold f; rewrite Hk; auto.
  set (m1':= fst (partition f m)).
  set (m2':= snd (partition f m)).
  split; rewrite Equal_mapsto_iff; intros k e.
  rewrite (@partition_iff_1 f Hf m m1') by auto.
  unfold f.
  rewrite <- mem_in_iff.
  destruct Hm as (Hm,Hm').
  rewrite Hm'.
  intuition.
  exists e; auto.
  elim (Hm k); split; auto; exists e; auto.
  rewrite (@partition_iff_2 f Hf m m2') by auto.
  unfold f.
  rewrite <- not_mem_in_iff.
  destruct Hm as (Hm,Hm').
  rewrite Hm'.
  intuition.
  elim (Hm k); split; auto; exists e; auto.
  elim H1; exists e; auto.
  Qed.

  Lemma update_mapsto_iff : forall m m' k e,
   MapsTo k e (update m m') <->
    (MapsTo k e m' \/ (MapsTo k e m /\ ~In k m')).
  Proof.
  unfold update.
  intros m m'.
  pattern m', (fold (@add _) m' m). apply fold_rec.

  intros m0 Hm0 k e.
  assert (~In k m0) by (intros (e0,He0); apply (Hm0 k e0); auto).
  intuition.
  elim (Hm0 k e); auto.

  intros k e m0 m1 m2 _ Hn Hadd IH k' e'.
  change (Equal m2 (add k e m1)) in Hadd.
  rewrite Hadd, 2 add_mapsto_iff, IH, add_in_iff. clear IH. intuition.
  Qed.

  Lemma update_dec : forall m m' k e, MapsTo k e (update m m') ->
   { MapsTo k e m' } + { MapsTo k e m /\ ~In k m'}.
  Proof.
  intros m m' k e H. rewrite update_mapsto_iff in H.
  destruct (In_dec m' k) as [H'|H']; [left|right]; intuition.
  elim H'; exists e; auto.
  Defined.

  Lemma update_in_iff : forall m m' k,
   In k (update m m') <-> In k m \/ In k m'.
  Proof.
  intros m m' k. split.
  intros (e,H); rewrite update_mapsto_iff in H.
  destruct H; [right|left]; exists e; intuition.
  destruct (In_dec m' k) as [H|H].
  destruct H as (e,H). intros _; exists e.
  rewrite update_mapsto_iff; left; auto.
  destruct 1 as [H'|H']; [|elim H; auto].
  destruct H' as (e,H'). exists e.
  rewrite update_mapsto_iff; right; auto.
  Qed.

  Lemma diff_mapsto_iff : forall m m' k e,
   MapsTo k e (diff m m') <-> MapsTo k e m /\ ~In k m'.
  Proof.
  intros m m' k e.
  unfold diff.
  rewrite filter_iff.
  intuition.
  rewrite mem_1 in *; auto; discriminate.
  intros ? ? Hk _ _ _; rewrite Hk; auto.
  Qed.

  Lemma diff_in_iff : forall m m' k,
   In k (diff m m') <-> In k m /\ ~In k m'.
  Proof.
  intros m m' k. split.
  intros (e,H); rewrite diff_mapsto_iff in H.
  destruct H; split; auto. exists e; auto.
  intros ((e,H),H'); exists e; rewrite diff_mapsto_iff; auto.
  Qed.

  Lemma restrict_mapsto_iff : forall m m' k e,
   MapsTo k e (restrict m m') <-> MapsTo k e m /\ In k m'.
  Proof.
  intros m m' k e.
  unfold restrict.
  rewrite filter_iff.
  intuition.
  intros ? ? Hk _ _ _; rewrite Hk; auto.
  Qed.

  Lemma restrict_in_iff : forall m m' k,
   In k (restrict m m') <-> In k m /\ In k m'.
  Proof.
  intros m m' k. split.
  intros (e,H); rewrite restrict_mapsto_iff in H.
  destruct H; split; auto. exists e; auto.
  intros ((e,H),H'); exists e; rewrite restrict_mapsto_iff; auto.
  Qed.

  (** specialized versions analyzing only keys (resp. elements) *)

  Definition filter_dom (f : key -> bool) := filter (fun k _ => f k).
  Definition filter_range (f : elt -> bool) := filter (fun _ => f).
  Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k).
  Definition for_all_range (f : elt -> bool) := for_all (fun _ => f).
  Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k).
  Definition exists_range (f : elt -> bool) := exists_ (fun _ => f).
  Definition partition_dom (f : key -> bool) := partition (fun k _ => f k).
  Definition partition_range (f : elt -> bool) := partition (fun _ => f).

 End Elt.

 Add Parametric Morphism elt : (@cardinal elt)
   with signature Equal ==> Leibniz as cardinal_m.
 Proof. intros; apply Equal_cardinal; auto. Qed.

 Add Parametric Morphism elt : (@Disjoint elt)
   with signature Equal ==> Equal ==> iff as Disjoint_m.
 Proof.
  intros m1 m1' Hm1 m2 m2' Hm2. unfold Disjoint. split; intros.
  rewrite <- Hm1, <- Hm2; auto.
  rewrite Hm1, Hm2; auto.
 Qed.

 Add Parametric Morphism elt : (@Partition elt)
   with signature Equal ==> Equal ==> Equal ==> iff as Partition_m.
 Proof.
  intros m1 m1' Hm1 m2 m2' Hm2 m3 m3' Hm3. unfold Partition.
  rewrite <- Hm2, <- Hm3.
  split; intros (H,H'); split; auto; intros.
  rewrite <- Hm1, <- Hm2, <- Hm3; auto.
  rewrite Hm1, Hm2, Hm3; auto.
 Qed.

 Add Parametric Morphism elt : (@update elt)
   with signature Equal ==> Equal ==> Equal as update_m.
 Proof.
  intros m1 m1' Hm1 m2 m2' Hm2.
  setoid_replace (update m1 m2) with (update m1' m2); unfold update.
  apply fold_Equal with (eqA:=Equal); auto.
  intros k k' Hk e e' He m m' Hm; rewrite Hk,He,Hm; red; auto.
  intros k k' e e' i Hneq x.
  rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
  apply fold_init with (eqA:=Equal); auto.
  intros k k' Hk e e' He m m' Hm; rewrite Hk,He,Hm; red; auto.
 Qed.

 Add Parametric Morphism elt : (@restrict elt)
   with signature Equal ==> Equal ==> Equal as restrict_m.
 Proof.
  intros m1 m1' Hm1 m2 m2' Hm2.
  setoid_replace (restrict m1 m2) with (restrict m1' m2);
   unfold restrict, filter.
  apply fold_rel with (R:=Equal); try red; auto.
   intros k e i i' H Hii' x.
   pattern (mem k m2); rewrite Hm2. (* UGLY, see with Matthieu *)
   destruct mem; rewrite Hii'; auto.
  apply fold_Equal with (eqA:=Equal); auto.
   intros k k' Hk e e' He m m' Hm; simpl in *.
   pattern (mem k m2); rewrite Hk. (* idem *)
   destruct mem; rewrite ?Hk,?He,Hm; red; auto.
   intros k k' e e' i Hneq x.
   case_eq (mem k m2); case_eq (mem k' m2); intros; auto.
   rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
 Qed.

 Add Parametric Morphism elt : (@diff elt)
   with signature Equal ==> Equal ==> Equal as diff_m.
 Proof.
  intros m1 m1' Hm1 m2 m2' Hm2.
  setoid_replace (diff m1 m2) with (diff m1' m2);
   unfold diff, filter.
  apply fold_rel with (R:=Equal); try red; auto.
   intros k e i i' H Hii' x.
   pattern (mem k m2); rewrite Hm2. (* idem *)
   destruct mem; simpl; rewrite Hii'; auto.
  apply fold_Equal with (eqA:=Equal); auto.
   intros k k' Hk e e' He m m' Hm; simpl in *.
   pattern (mem k m2); rewrite Hk. (* idem *)
   destruct mem; simpl; rewrite ?Hk,?He,Hm; red; auto.
   intros k k' e e' i Hneq x.
   case_eq (mem k m2); case_eq (mem k' m2); intros; simpl; auto.
   rewrite !add_o; do 2 destruct eq_dec; auto. elim Hneq; eauto.
 Qed.

End WProperties_fun.

(** * Same Properties for self-contained weak maps and for full maps *)

Module WProperties (M:WS) := WProperties_fun M.E M.
Module Properties := WProperties.

(** * Properties specific to maps with ordered keys *)

Module OrdProperties (M:S).
 Module Import ME := OrderedTypeFacts M.E.
 Module Import O:=KeyOrderedType M.E.
 Module Import P:=Properties M.
 Import F.
 Import M.

 Section Elt. 
  Variable elt:Type.

  Notation eqke := (@eqke elt).
  Notation eqk := (@eqk elt).
  Notation ltk := (@ltk elt).
  Notation cardinal := (@cardinal elt).
  Notation Equal := (@Equal elt).
  Notation Add := (@Add elt).

  Definition Above x (m:t elt) := forall y, In y m -> E.lt y x.
  Definition Below x (m:t elt) := forall y, In y m -> E.lt x y.

  Section Elements.

  Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
   sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
  Proof.
  apply SortA_equivlistA_eqlistA; eauto; 
  unfold O.eqke, O.ltk; simpl; intuition; eauto.
  Qed.

  Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto.

  Definition gtb (p p':key*elt) :=
    match E.compare (fst p) (fst p') with GT _ => true | _ => false end.
  Definition leb p := fun p' => negb (gtb p p'). 

  Definition elements_lt p m := List.filter (gtb p) (elements m).
  Definition elements_ge p m := List.filter (leb p) (elements m).

  Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p.
  Proof.
   intros (x,e) (y,e'); unfold gtb, O.ltk; simpl.
   destruct (E.compare x y); intuition; try discriminate; ME.order.
  Qed.

  Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p.
  Proof.
   intros (x,e) (y,e'); unfold leb, gtb, O.ltk; simpl.
   destruct (E.compare x y); intuition; try discriminate; ME.order.
  Qed.

  Lemma gtb_compat : forall p, compat_bool eqke (gtb p).
  Proof.
   red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
   generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e'')); 
    destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto.
   unfold O.ltk in *; simpl in *; intros.
   symmetry; rewrite H2.
   apply ME.eq_lt with a; auto.
   rewrite <- H1; auto.
   unfold O.ltk in *; simpl in *; intros.
   rewrite H1.
   apply ME.eq_lt with b; auto.
   rewrite <- H2; auto.
  Qed.

  Lemma leb_compat : forall p, compat_bool eqke (leb p).
  Proof.
   red; intros x a b H.
   unfold leb; f_equal; apply gtb_compat; auto.
  Qed.

  Hint Resolve gtb_compat leb_compat elements_3 : map.

  Lemma elements_split : forall p m, 
    elements m = elements_lt p m ++ elements_ge p m.
  Proof.
  unfold elements_lt, elements_ge, leb; intros.
  apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with map.
  intros; destruct x; destruct y; destruct p.
  rewrite gtb_1 in H; unfold O.ltk in H; simpl in *.
  assert (~ltk (t1,e0) (k,e1)).
   unfold gtb, O.ltk in *; simpl in *.
   destruct (E.compare k t1); intuition; try discriminate; ME.order.
  unfold O.ltk in *; simpl in *; ME.order.
  Qed.

  Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' -> 
    eqlistA eqke (elements m') 
                 (elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m).
  Proof.
  intros; unfold elements_lt, elements_ge.
  apply sort_equivlistA_eqlistA; auto with map.
  apply (@SortA_app _ eqke); auto with map.
  apply (@filter_sort _ eqke); auto with map; clean_eauto.
  constructor; auto with map.
  apply (@filter_sort _ eqke); auto with map; clean_eauto.
  rewrite (@InfA_alt _ eqke); auto with map; try (clean_eauto; fail).
  intros.
  rewrite filter_InA in H1; auto with map; destruct H1.
  rewrite leb_1 in H2.
  destruct y; unfold O.ltk in *; simpl in *.
  rewrite <- elements_mapsto_iff in H1.
  assert (~E.eq x t0).
   contradict H.
   exists e0; apply MapsTo_1 with t0; auto.
  ME.order.
  apply (@filter_sort _ eqke); auto with map; clean_eauto.
  intros.
  rewrite filter_InA in H1; auto with map; destruct H1.
  rewrite gtb_1 in H3.
  destruct y; destruct x0; unfold O.ltk in *; simpl in *.
  inversion_clear H2.
  red in H4; simpl in *; destruct H4.
  ME.order.
  rewrite filter_InA in H4; auto with map; destruct H4.
  rewrite leb_1 in H4.
  unfold O.ltk in *; simpl in *; ME.order.
  red; intros a; destruct a.
  rewrite InA_app_iff; rewrite InA_cons.
  do 2 (rewrite filter_InA; auto with map).
  do 2 rewrite <- elements_mapsto_iff.
  rewrite leb_1; rewrite gtb_1.
  rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
  rewrite add_mapsto_iff.
  unfold O.eqke, O.ltk; simpl.
  destruct (E.compare t0 x); intuition.
  right; split; auto; ME.order.
  ME.order.
  elim H.
  exists e0; apply MapsTo_1 with t0; auto.
  right; right; split; auto; ME.order.
  ME.order.
  right; split; auto; ME.order.
  Qed.

  Lemma elements_Add_Above : forall m m' x e, 
   Above x m -> Add x e m m' -> 
     eqlistA eqke (elements m') (elements m ++ (x,e)::nil).
  Proof.
  intros.
  apply sort_equivlistA_eqlistA; auto with map.
  apply (@SortA_app _ eqke); auto with map.
  intros.
  inversion_clear H2.
  destruct x0; destruct y.
  rewrite <- elements_mapsto_iff in H1.
  unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
  apply ME.lt_eq with x; auto.
  apply H; firstorder.
  inversion H3.
  red; intros a; destruct a.
  rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
  do 2 rewrite <- elements_mapsto_iff.
  rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
  rewrite add_mapsto_iff; unfold O.eqke; simpl.
  intuition.
  destruct (E.eq_dec x t0); auto.
  elimtype False.
  assert (In t0 m).
   exists e0; auto.
  generalize (H t0 H1).
  ME.order.
  Qed.

  Lemma elements_Add_Below : forall m m' x e, 
   Below x m -> Add x e m m' -> 
     eqlistA eqke (elements m') ((x,e)::elements m).
  Proof.
  intros.
  apply sort_equivlistA_eqlistA; auto with map.
  change (sort ltk (((x,e)::nil) ++ elements m)).
  apply (@SortA_app _ eqke); auto with map.
  intros.
  inversion_clear H1.
  destruct y; destruct x0.
  rewrite <- elements_mapsto_iff in H2.
  unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
  apply ME.eq_lt with x; auto.
  apply H; firstorder.
  inversion H3.
  red; intros a; destruct a.
  rewrite InA_cons.
  do 2 rewrite <- elements_mapsto_iff.
  rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
  rewrite add_mapsto_iff; unfold O.eqke; simpl.
  intuition.
  destruct (E.eq_dec x t0); auto.
  elimtype False.
  assert (In t0 m).
   exists e0; auto.
  generalize (H t0 H1).
  ME.order.
  Qed.

  Lemma elements_Equal_eqlistA : forall (m m': t elt), 
   Equal m m' -> eqlistA eqke (elements m) (elements m').
  Proof.
  intros.
  apply sort_equivlistA_eqlistA; auto with map.
  red; intros.
  destruct x; do 2 rewrite <- elements_mapsto_iff.
  do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
  Qed.

  End Elements.

  Section Min_Max_Elt.

  (** We emulate two [max_elt] and [min_elt] functions. *)
  
  Fixpoint max_elt_aux (l:list (key*elt)) := match l with 
    | nil => None 
    | (x,e)::nil => Some (x,e)
    | (x,e)::l => max_elt_aux l
    end.
  Definition max_elt m := max_elt_aux (elements m).

  Lemma max_elt_Above : 
   forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
  Proof.
  red; intros.
  rewrite remove_in_iff in H0.
  destruct H0.
  rewrite elements_in_iff in H1.
  destruct H1.
  unfold max_elt in *.
  generalize (elements_3 m).
  revert x e H y x0 H0 H1.
  induction (elements m).
  simpl; intros; try discriminate.
  intros.
  destruct a; destruct l; simpl in *.
  injection H; clear H; intros; subst.
  inversion_clear H1.
  red in H; simpl in *; intuition.
  elim H0; eauto.
  inversion H.
  change (max_elt_aux (p::l) = Some (x,e)) in H.
  generalize (IHl x e H); clear IHl; intros IHl.
  inversion_clear H1; [ | inversion_clear H2; eauto ].
  red in H3; simpl in H3; destruct H3.
  destruct p as (p1,p2).
  destruct (E.eq_dec p1 x).
  apply ME.lt_eq with p1; auto.
   inversion_clear H2.
   inversion_clear H5.
   red in H2; simpl in H2; ME.order.
  apply E.lt_trans with p1; auto.
   inversion_clear H2.
   inversion_clear H5.
   red in H2; simpl in H2; ME.order.
  eapply IHl; eauto.
  econstructor; eauto.
  red; eauto.
  inversion H2; auto.
  Qed.
  
  Lemma max_elt_MapsTo : 
   forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
  Proof.
  intros.
  unfold max_elt in *.
  rewrite elements_mapsto_iff.
  induction (elements m).
  simpl; try discriminate.
  destruct a; destruct l; simpl in *.
  injection H; intros; subst; constructor; red; auto.
  constructor 2; auto.
  Qed.

  Lemma max_elt_Empty : 
   forall m, max_elt m = None -> Empty m.
  Proof.
  intros.
  unfold max_elt in *.
  rewrite elements_Empty.
  induction (elements m); auto.
  destruct a; destruct l; simpl in *; try discriminate.
  assert (H':=IHl H); discriminate.
  Qed.

  Definition min_elt m : option (key*elt) := match elements m with 
   | nil => None
   | (x,e)::_ => Some (x,e)
  end.

  Lemma min_elt_Below : 
   forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
  Proof.
  unfold min_elt, Below; intros.
  rewrite remove_in_iff in H0; destruct H0.
  rewrite elements_in_iff in H1.
  destruct H1.
  generalize (elements_3 m).
  destruct (elements m).
  try discriminate.
  destruct p; injection H; intros; subst.
  inversion_clear H1.
  red in H2; destruct H2; simpl in *; ME.order.
  inversion_clear H4.
  rewrite (@InfA_alt _ eqke) in H3; eauto.
  apply (H3 (y,x0)); auto.
  unfold lt_key; simpl; intuition; eauto.
  intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
  intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
  Qed.
  
  Lemma min_elt_MapsTo : 
   forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
  Proof.
  intros.
  unfold min_elt in *.
  rewrite elements_mapsto_iff.
  destruct (elements m).
  simpl; try discriminate.
  destruct p; simpl in *.
  injection H; intros; subst; constructor; red; auto.
  Qed.

  Lemma min_elt_Empty : 
   forall m, min_elt m = None -> Empty m.
  Proof.
  intros.
  unfold min_elt in *.
  rewrite elements_Empty.
  destruct (elements m); auto.
  destruct p; simpl in *; discriminate.
  Qed.

  End Min_Max_Elt.

  Section Induction_Principles.

  Lemma map_induction_max :
   forall P : t elt -> Type,
   (forall m, Empty m -> P m) ->
   (forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') ->
   forall m, P m.
  Proof.
  intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
  apply X; apply cardinal_inv_1; auto.

  case_eq (max_elt m); intros.
  destruct p.
  assert (Add k e (remove k m) m).
   red; intros.
   rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
   apply find_1; apply MapsTo_1 with k; auto.
   apply max_elt_MapsTo; auto.
  apply X0 with (remove k m) k e; auto with map.
  apply IHn.
  assert (S n = S (cardinal (remove k m))).
   rewrite Heqn.
   eapply cardinal_2; eauto with map.
  inversion H1; auto. 
  eapply max_elt_Above; eauto.

  apply X; apply max_elt_Empty; auto.
  Qed.

  Lemma map_induction_min :
   forall P : t elt -> Type,
   (forall m, Empty m -> P m) ->
   (forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') ->
   forall m, P m.
  Proof.
  intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
  apply X; apply cardinal_inv_1; auto.

  case_eq (min_elt m); intros.
  destruct p.
  assert (Add k e (remove k m) m).
   red; intros.
   rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
   apply find_1; apply MapsTo_1 with k; auto.
   apply min_elt_MapsTo; auto.
  apply X0 with (remove k m) k e; auto.
  apply IHn.
  assert (S n = S (cardinal (remove k m))).
   rewrite Heqn.
   eapply cardinal_2; eauto with map.
  inversion H1; auto. 
  eapply min_elt_Below; eauto.

  apply X; apply min_elt_Empty; auto.
  Qed.

  End Induction_Principles.

  Section Fold_properties.

  (** The following lemma has already been proved on Weak Maps,
      but with one additionnal hypothesis (some [transpose] fact). *)

  Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence  eqA)
   (f:key->elt->A->A)(i:A),
   Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
   Equal m1 m2 ->
   eqA (fold f m1 i) (fold f m2 i).
  Proof.
  intros m1 m2 A eqA st f i Hf Heq.
  do 2 rewrite fold_1.
  do 2 rewrite <- fold_left_rev_right.
  apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
  intros (k,e) (k',e') a a' (Hk,He) Ha; simpl in *; apply Hf; auto.
  apply eqlistA_rev. apply elements_Equal_eqlistA. auto.
  Qed.

  Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
   (f:key->elt->A->A)(i:A),
   Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
   Above x m1 -> Add x e m1 m2 ->
   eqA (fold f m2 i) (f x e (fold f m1 i)).
  Proof.
  intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
  set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
  transitivity (fold_right f' i (rev (elements m1 ++ (x,e)::nil))).
  apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
  intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto.
  apply eqlistA_rev.
  apply elements_Add_Above; auto.
  rewrite distr_rev; simpl.
  reflexivity.
  Qed.

  Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
   (f:key->elt->A->A)(i:A),
   Morphism (E.eq==>Leibniz==>eqA==>eqA) f ->
   Below x m1 -> Add x e m1 m2 ->
   eqA (fold f m2 i) (fold f m1 (f x e i)).
  Proof.
  intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
  set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
  transitivity (fold_right f' i (rev (((x,e)::nil)++elements m1))).
  apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
  intros (k1,e1) (k2,e2) a1 a2 (Hk,He) Ha; unfold f'; simpl in *; apply H; auto.
  apply eqlistA_rev.
  simpl; apply elements_Add_Below; auto.
  rewrite distr_rev; simpl.
  rewrite fold_right_app.
  reflexivity.
  Qed.

  End Fold_properties.

 End Elt.

End OrdProperties.