1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Finite map library. *)
(** * FMapAVL *)
(** This module implements maps using AVL trees.
It follows the implementation from Ocaml's standard library.
See the comments at the beginning of FSetAVL for more details.
*)
Require Import FMapInterface FMapList ZArith Int.
Set Implicit Arguments.
Unset Strict Implicit.
(** Notations and helper lemma about pairs *)
Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
(** * The Raw functor
Functor of pure functions + separate proofs of invariant
preservation *)
Module Raw (Import I:Int)(X: OrderedType).
Local Open Scope pair_scope.
Local Open Scope lazy_bool_scope.
Local Open Scope Int_scope.
Local Notation int := I.t.
Definition key := X.t.
Hint Transparent key.
(** * Trees *)
Section Elt.
Variable elt : Type.
(** * Trees
The fifth field of [Node] is the height of the tree *)
Inductive tree :=
| Leaf : tree
| Node : tree -> key -> elt -> tree -> int -> tree.
Notation t := tree.
(** * Basic functions on trees: height and cardinal *)
Definition height (m : t) : int :=
match m with
| Leaf => 0
| Node _ _ _ _ h => h
end.
Fixpoint cardinal (m : t) : nat :=
match m with
| Leaf => 0%nat
| Node l _ _ r _ => S (cardinal l + cardinal r)
end.
(** * Empty Map *)
Definition empty := Leaf.
(** * Emptyness test *)
Definition is_empty m := match m with Leaf => true | _ => false end.
(** * Membership *)
(** The [mem] function is deciding membership. It exploits the [bst] property
to achieve logarithmic complexity. *)
Fixpoint mem x m : bool :=
match m with
| Leaf => false
| Node l y _ r _ => match X.compare x y with
| LT _ => mem x l
| EQ _ => true
| GT _ => mem x r
end
end.
Fixpoint find x m : option elt :=
match m with
| Leaf => None
| Node l y d r _ => match X.compare x y with
| LT _ => find x l
| EQ _ => Some d
| GT _ => find x r
end
end.
(** * Helper functions *)
(** [create l x r] creates a node, assuming [l] and [r]
to be balanced and [|height l - height r| <= 2]. *)
Definition create l x e r :=
Node l x e r (max (height l) (height r) + 1).
(** [bal l x e r] acts as [create], but performs one step of
rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
Definition assert_false := create.
Fixpoint bal l x d r :=
let hl := height l in
let hr := height r in
if gt_le_dec hl (hr+2) then
match l with
| Leaf => assert_false l x d r
| Node ll lx ld lr _ =>
if ge_lt_dec (height ll) (height lr) then
create ll lx ld (create lr x d r)
else
match lr with
| Leaf => assert_false l x d r
| Node lrl lrx lrd lrr _ =>
create (create ll lx ld lrl) lrx lrd (create lrr x d r)
end
end
else
if gt_le_dec hr (hl+2) then
match r with
| Leaf => assert_false l x d r
| Node rl rx rd rr _ =>
if ge_lt_dec (height rr) (height rl) then
create (create l x d rl) rx rd rr
else
match rl with
| Leaf => assert_false l x d r
| Node rll rlx rld rlr _ =>
create (create l x d rll) rlx rld (create rlr rx rd rr)
end
end
else
create l x d r.
(** * Insertion *)
Fixpoint add x d m :=
match m with
| Leaf => Node Leaf x d Leaf 1
| Node l y d' r h =>
match X.compare x y with
| LT _ => bal (add x d l) y d' r
| EQ _ => Node l y d r h
| GT _ => bal l y d' (add x d r)
end
end.
(** * Extraction of minimum binding
Morally, [remove_min] is to be applied to a non-empty tree
[t = Node l x e r h]. Since we can't deal here with [assert false]
for [t=Leaf], we pre-unpack [t] (and forget about [h]).
*)
Fixpoint remove_min l x d r : t*(key*elt) :=
match l with
| Leaf => (r,(x,d))
| Node ll lx ld lr lh =>
let (l',m) := remove_min ll lx ld lr in
(bal l' x d r, m)
end.
(** * Merging two trees
[merge t1 t2] builds the union of [t1] and [t2] assuming all elements
of [t1] to be smaller than all elements of [t2], and
[|height t1 - height t2| <= 2].
*)
Fixpoint merge s1 s2 := match s1,s2 with
| Leaf, _ => s2
| _, Leaf => s1
| _, Node l2 x2 d2 r2 h2 =>
match remove_min l2 x2 d2 r2 with
(s2',(x,d)) => bal s1 x d s2'
end
end.
(** * Deletion *)
Fixpoint remove x m := match m with
| Leaf => Leaf
| Node l y d r h =>
match X.compare x y with
| LT _ => bal (remove x l) y d r
| EQ _ => merge l r
| GT _ => bal l y d (remove x r)
end
end.
(** * join
Same as [bal] but does not assume anything regarding heights of [l]
and [r].
*)
Fixpoint join l : key -> elt -> t -> t :=
match l with
| Leaf => add
| Node ll lx ld lr lh => fun x d =>
fix join_aux (r:t) : t := match r with
| Leaf => add x d l
| Node rl rx rd rr rh =>
if gt_le_dec lh (rh+2) then bal ll lx ld (join lr x d r)
else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rd rr
else create l x d r
end
end.
(** * Splitting
[split x m] returns a triple [(l, o, r)] where
- [l] is the set of elements of [m] that are [< x]
- [r] is the set of elements of [m] that are [> x]
- [o] is the result of [find x m].
*)
Record triple := mktriple { t_left:t; t_opt:option elt; t_right:t }.
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Fixpoint split x m : triple := match m with
| Leaf => << Leaf, None, Leaf >>
| Node l y d r h =>
match X.compare x y with
| LT _ => let (ll,o,rl) := split x l in << ll, o, join rl y d r >>
| EQ _ => << l, Some d, r >>
| GT _ => let (rl,o,rr) := split x r in << join l y d rl, o, rr >>
end
end.
(** * Concatenation
Same as [merge] but does not assume anything about heights.
*)
Definition concat m1 m2 :=
match m1, m2 with
| Leaf, _ => m2
| _ , Leaf => m1
| _, Node l2 x2 d2 r2 _ =>
let (m2',xd) := remove_min l2 x2 d2 r2 in
join m1 xd#1 xd#2 m2'
end.
(** * Elements *)
(** [elements_tree_aux acc t] catenates the elements of [t] in infix
order to the list [acc] *)
Fixpoint elements_aux (acc : list (key*elt)) m : list (key*elt) :=
match m with
| Leaf => acc
| Node l x d r _ => elements_aux ((x,d) :: elements_aux acc r) l
end.
(** then [elements] is an instantiation with an empty [acc] *)
Definition elements := elements_aux nil.
(** * Fold *)
Fixpoint fold (A : Type) (f : key -> elt -> A -> A) (m : t) : A -> A :=
fun a => match m with
| Leaf => a
| Node l x d r _ => fold f r (f x d (fold f l a))
end.
(** * Comparison *)
Variable cmp : elt->elt->bool.
(** ** Enumeration of the elements of a tree *)
Inductive enumeration :=
| End : enumeration
| More : key -> elt -> t -> enumeration -> enumeration.
(** [cons m e] adds the elements of tree [m] on the head of
enumeration [e]. *)
Fixpoint cons m e : enumeration :=
match m with
| Leaf => e
| Node l x d r h => cons l (More x d r e)
end.
(** One step of comparison of elements *)
Definition equal_more x1 d1 (cont:enumeration->bool) e2 :=
match e2 with
| End => false
| More x2 d2 r2 e2 =>
match X.compare x1 x2 with
| EQ _ => cmp d1 d2 &&& cont (cons r2 e2)
| _ => false
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint equal_cont m1 (cont:enumeration->bool) e2 :=
match m1 with
| Leaf => cont e2
| Node l1 x1 d1 r1 _ =>
equal_cont l1 (equal_more x1 d1 (equal_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition equal_end e2 := match e2 with End => true | _ => false end.
(** The complete comparison *)
Definition equal m1 m2 := equal_cont m1 equal_end (cons m2 End).
End Elt.
Notation t := tree.
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
Notation "t #o" := (t_opt t) (at level 9, format "t '#o'").
Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
(** * Map *)
Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h => Node (map f l) x (f d) (map f r) h
end.
(* * Mapi *)
Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h
end.
(** * Map with removal *)
Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
: t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h =>
match f x d with
| Some d' => join (map_option f l) x d' (map_option f r)
| None => concat (map_option f l) (map_option f r)
end
end.
(** * Optimized map2
Suggestion by B. Gregoire: a [map2] function with specialized
arguments that allows bypassing some tree traversal. Instead of one
[f0] of type [key -> option elt -> option elt' -> option elt''],
we ask here for:
- [f] which is a specialisation of [f0] when first option isn't [None]
- [mapl] treats a [tree elt] with [f0] when second option is [None]
- [mapr] treats a [tree elt'] with [f0] when first option is [None]
The idea is that [mapl] and [mapr] can be instantaneous (e.g.
the identity or some constant function).
*)
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Fixpoint map2_opt m1 m2 :=
match m1, m2 with
| Leaf _, _ => mapr m2
| _, Leaf _ => mapl m1
| Node l1 x1 d1 r1 h1, _ =>
let (l2',o2,r2') := split x1 m2 in
match f x1 d1 o2 with
| Some e => join (map2_opt l1 l2') x1 e (map2_opt r1 r2')
| None => concat (map2_opt l1 l2') (map2_opt r1 r2')
end
end.
End Map2_opt.
(** * Map2
The [map2] function of the Map interface can be implemented
via [map2_opt] and [map_option].
*)
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Definition map2 : t elt -> t elt' -> t elt'' :=
map2_opt
(fun _ d o => f (Some d) o)
(map_option (fun _ d => f (Some d) None))
(map_option (fun _ d' => f None (Some d'))).
End Map2.
(** * Invariants *)
Section Invariants.
Variable elt : Type.
(** ** Occurrence in a tree *)
Inductive MapsTo (x : key)(e : elt) : t elt -> Prop :=
| MapsRoot : forall l r h y,
X.eq x y -> MapsTo x e (Node l y e r h)
| MapsLeft : forall l r h y e',
MapsTo x e l -> MapsTo x e (Node l y e' r h)
| MapsRight : forall l r h y e',
MapsTo x e r -> MapsTo x e (Node l y e' r h).
Inductive In (x : key) : t elt -> Prop :=
| InRoot : forall l r h y e,
X.eq x y -> In x (Node l y e r h)
| InLeft : forall l r h y e',
In x l -> In x (Node l y e' r h)
| InRight : forall l r h y e',
In x r -> In x (Node l y e' r h).
Definition In0 k m := exists e:elt, MapsTo k e m.
(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
Definition lt_tree x m := forall y, In y m -> X.lt y x.
Definition gt_tree x m := forall y, In y m -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : t elt -> Prop :=
| BSLeaf : bst (Leaf _)
| BSNode : forall x e l r h, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (Node l x e r h).
End Invariants.
(** * Correctness proofs, isolated in a sub-module *)
Module Proofs.
Module MX := OrderedTypeFacts X.
Module PX := KeyOrderedType X.
Module L := FMapList.Raw X.
Functional Scheme mem_ind := Induction for mem Sort Prop.
Functional Scheme find_ind := Induction for find Sort Prop.
Functional Scheme bal_ind := Induction for bal Sort Prop.
Functional Scheme add_ind := Induction for add Sort Prop.
Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
Functional Scheme merge_ind := Induction for merge Sort Prop.
Functional Scheme remove_ind := Induction for remove Sort Prop.
Functional Scheme concat_ind := Induction for concat Sort Prop.
Functional Scheme split_ind := Induction for split Sort Prop.
Functional Scheme map_option_ind := Induction for map_option Sort Prop.
Functional Scheme map2_opt_ind := Induction for map2_opt Sort Prop.
(** * Automation and dedicated tactics. *)
Hint Constructors tree MapsTo In bst.
Hint Unfold lt_tree gt_tree.
Tactic Notation "factornode" ident(l) ident(x) ident(d) ident(r) ident(h)
"as" ident(s) :=
set (s:=Node l x d r h) in *; clearbody s; clear l x d r h.
(** A tactic for cleaning hypothesis after use of functional induction. *)
Ltac clearf :=
match goal with
| H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf
| H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf
| _ => idtac
end.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node ...))] *)
Ltac inv f :=
match goal with
| H:f (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ _ _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| _ => idtac
end.
Ltac inv_all f :=
match goal with
| H: f _ |- _ => inversion_clear H; inv f
| H: f _ _ |- _ => inversion_clear H; inv f
| H: f _ _ _ |- _ => inversion_clear H; inv f
| H: f _ _ _ _ |- _ => inversion_clear H; inv f
| _ => idtac
end.
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with
| U: lt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
| U: gt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
Ltac intuition_in := repeat (intuition; inv In; inv MapsTo).
(* Function/Functional Scheme can't deal with internal fix.
Let's do its job by hand: *)
Ltac join_tac :=
intros l; induction l as [| ll _ lx ld lr Hlr lh];
[ | intros x d r; induction r as [| rl Hrl rx rd rr _ rh]; unfold join;
[ | destruct (gt_le_dec lh (rh+2)) as [GT|LE];
[ match goal with |- context [ bal ?u ?v ?w ?z ] =>
replace (bal u v w z)
with (bal ll lx ld (join lr x d (Node rl rx rd rr rh))); [ | auto]
end
| destruct (gt_le_dec rh (lh+2)) as [GT'|LE'];
[ match goal with |- context [ bal ?u ?v ?w ?z ] =>
replace (bal u v w z)
with (bal (join (Node ll lx ld lr lh) x d rl) rx rd rr); [ | auto]
end
| ] ] ] ]; intros.
Section Elt.
Variable elt:Type.
Implicit Types m r : t elt.
(** * Basic results about [MapsTo], [In], [lt_tree], [gt_tree], [height] *)
(** Facts about [MapsTo] and [In]. *)
Lemma MapsTo_In : forall k e m, MapsTo k e m -> In k m.
Proof.
induction 1; auto.
Qed.
Hint Resolve MapsTo_In.
Lemma In_MapsTo : forall k m, In k m -> exists e, MapsTo k e m.
Proof.
induction 1; try destruct IHIn as (e,He); exists e; auto.
Qed.
Lemma In_alt : forall k m, In0 k m <-> In k m.
Proof.
split.
intros (e,H); eauto.
unfold In0; apply In_MapsTo; auto.
Qed.
Lemma MapsTo_1 :
forall m x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
induction m; simpl; intuition_in; eauto.
Qed.
Hint Immediate MapsTo_1.
Lemma In_1 :
forall m x y, X.eq x y -> In x m -> In y m.
Proof.
intros m x y; induction m; simpl; intuition_in; eauto.
Qed.
Lemma In_node_iff :
forall l x e r h y,
In y (Node l x e r h) <-> In y l \/ X.eq y x \/ In y r.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
unfold lt_tree; intros; intuition_in.
Qed.
Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
unfold gt_tree; intros; intuition_in.
Qed.
Lemma lt_tree_node : forall x y l r e h,
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y e r h).
Proof.
unfold lt_tree in *; intuition_in; order.
Qed.
Lemma gt_tree_node : forall x y l r e h,
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y e r h).
Proof.
unfold gt_tree in *; intuition_in; order.
Qed.
Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
Lemma lt_left : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x l.
Proof.
intuition_in.
Qed.
Lemma lt_right : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x r.
Proof.
intuition_in.
Qed.
Lemma gt_left : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x l.
Proof.
intuition_in.
Qed.
Lemma gt_right : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x r.
Proof.
intuition_in.
Qed.
Hint Resolve lt_left lt_right gt_left gt_right.
Lemma lt_tree_not_in :
forall x m, lt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall m, lt_tree x m -> lt_tree y m.
Proof.
eauto.
Qed.
Lemma gt_tree_not_in :
forall x m, gt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall m, gt_tree x m -> gt_tree y m.
Proof.
eauto.
Qed.
Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
(** * Empty map *)
Definition Empty m := forall (a:key)(e:elt) , ~ MapsTo a e m.
Lemma empty_bst : bst (empty elt).
Proof.
unfold empty; auto.
Qed.
Lemma empty_1 : Empty (empty elt).
Proof.
unfold empty, Empty; intuition_in.
Qed.
(** * Emptyness test *)
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof.
destruct m as [|r x e l h]; simpl; auto.
intro H; elim (H x e); auto.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
destruct m; simpl; intros; try discriminate; red; intuition_in.
Qed.
(** * Membership *)
Lemma mem_1 : forall m x, bst m -> In x m -> mem x m = true.
Proof.
intros m x; functional induction (mem x m); auto; intros; clearf;
inv bst; intuition_in; order.
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
intros m x; functional induction (mem x m); auto; intros; discriminate.
Qed.
Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
Proof.
intros m x; functional induction (find x m); auto; intros; clearf;
inv bst; intuition_in; simpl; auto;
try solve [order | absurd (X.lt x y); eauto | absurd (X.lt y x); eauto].
Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m x; functional induction (find x m); subst; intros; clearf;
try discriminate.
constructor 2; auto.
inversion H; auto.
constructor 3; auto.
Qed.
Lemma find_iff : forall m x e, bst m ->
(find x m = Some e <-> MapsTo x e m).
Proof.
split; auto using find_1, find_2.
Qed.
Lemma find_in : forall m x, find x m <> None -> In x m.
Proof.
intros.
case_eq (find x m); [intros|congruence].
apply MapsTo_In with e; apply find_2; auto.
Qed.
Lemma in_find : forall m x, bst m -> In x m -> find x m <> None.
Proof.
intros.
destruct (In_MapsTo H0) as (d,Hd).
rewrite (find_1 H Hd); discriminate.
Qed.
Lemma find_in_iff : forall m x, bst m ->
(find x m <> None <-> In x m).
Proof.
split; auto using find_in, in_find.
Qed.
Lemma not_find_iff : forall m x, bst m ->
(find x m = None <-> ~In x m).
Proof.
split; intros.
red; intros.
elim (in_find H H1 H0).
case_eq (find x m); [ intros | auto ].
elim H0; apply find_in; congruence.
Qed.
Lemma find_find : forall m m' x,
find x m = find x m' <->
(forall d, find x m = Some d <-> find x m' = Some d).
Proof.
intros; destruct (find x m); destruct (find x m'); split; intros;
try split; try congruence.
rewrite H; auto.
symmetry; rewrite <- H; auto.
rewrite H; auto.
Qed.
Lemma find_mapsto_equiv : forall m m' x, bst m -> bst m' ->
(find x m = find x m' <->
(forall d, MapsTo x d m <-> MapsTo x d m')).
Proof.
intros m m' x Hm Hm'.
rewrite find_find.
split; intros H d; specialize H with d.
rewrite <- 2 find_iff; auto.
rewrite 2 find_iff; auto.
Qed.
Lemma find_in_equiv : forall m m' x, bst m -> bst m' ->
find x m = find x m' ->
(In x m <-> In x m').
Proof.
split; intros; apply find_in; [ rewrite <- H1 | rewrite H1 ];
apply in_find; auto.
Qed.
(** * Helper functions *)
Lemma create_bst :
forall l x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
bst (create l x e r).
Proof.
unfold create; auto.
Qed.
Hint Resolve create_bst.
Lemma create_in :
forall l x e r y,
In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
unfold create; split; [ inversion_clear 1 | ]; intuition.
Qed.
Lemma bal_bst : forall l x e r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (bal l x e r).
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
inv bst; repeat apply create_bst; auto; unfold create; try constructor;
(apply lt_tree_node || apply gt_tree_node); auto;
(eapply lt_tree_trans || eapply gt_tree_trans); eauto.
Qed.
Hint Resolve bal_bst.
Lemma bal_in : forall l x e r y,
In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
rewrite !create_in; intuition_in.
Qed.
Lemma bal_mapsto : forall l x e r y e',
MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r).
Proof.
intros l x e r; functional induction (bal l x e r); intros; clearf;
unfold assert_false, create; intuition_in.
Qed.
Lemma bal_find : forall l x e r y,
bst l -> bst r -> lt_tree x l -> gt_tree x r ->
find y (bal l x e r) = find y (create l x e r).
Proof.
intros; rewrite find_mapsto_equiv; auto; intros; apply bal_mapsto.
Qed.
(** * Insertion *)
Lemma add_in : forall m x y e,
In y (add x e m) <-> X.eq y x \/ In y m.
Proof.
intros m x y e; functional induction (add x e m); auto; intros;
try (rewrite bal_in, IHt); intuition_in.
apply In_1 with x; auto.
Qed.
Lemma add_bst : forall m x e, bst m -> bst (add x e m).
Proof.
intros m x e; functional induction (add x e m); intros;
inv bst; try apply bal_bst; auto;
intro z; rewrite add_in; intuition.
apply MX.eq_lt with x; auto.
apply MX.lt_eq with x; auto.
Qed.
Hint Resolve add_bst.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
intros m x y e; functional induction (add x e m);
intros; inv bst; try rewrite bal_mapsto; unfold create; eauto.
Qed.
Lemma add_2 : forall m x y e e', ~X.eq x y ->
MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
intros m x y e e'; induction m; simpl; auto.
destruct (X.compare x k);
intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
inv MapsTo; auto; order.
Qed.
Lemma add_3 : forall m x y e e', ~X.eq x y ->
MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
intros m x y e e'; induction m; simpl; auto.
intros; inv MapsTo; auto; order.
destruct (X.compare x k); intro;
try rewrite bal_mapsto; auto; unfold create; intros; inv MapsTo; auto;
order.
Qed.
Lemma add_find : forall m x y e, bst m ->
find y (add x e m) =
match X.compare y x with EQ _ => Some e | _ => find y m end.
Proof.
intros.
assert (~X.eq x y -> find y (add x e m) = find y m).
intros; rewrite find_mapsto_equiv; auto.
split; eauto using add_2, add_3.
destruct X.compare; try (apply H0; order).
auto using find_1, add_1.
Qed.
(** * Extraction of minimum binding *)
Lemma remove_min_in : forall l x e r h y,
In y (Node l x e r h) <->
X.eq y (remove_min l x e r)#2#1 \/ In y (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
intuition_in.
rewrite e0 in *; simpl; intros.
rewrite bal_in, In_node_iff, IHp; intuition.
Qed.
Lemma remove_min_mapsto : forall l x e r h y e',
MapsTo y e' (Node l x e r h) <->
((X.eq y (remove_min l x e r)#2#1) /\ e' = (remove_min l x e r)#2#2)
\/ MapsTo y e' (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
intuition_in; subst; auto.
rewrite e0 in *; simpl; intros.
rewrite bal_mapsto; auto; unfold create.
simpl in *;destruct (IHp _x y e').
intuition.
inversion_clear H1; intuition.
inversion_clear H3; intuition.
Qed.
Lemma remove_min_bst : forall l x e r h,
bst (Node l x e r h) -> bst (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
inv bst; auto.
inversion_clear H; inversion_clear H0.
apply bal_bst; auto.
rewrite e0 in *; simpl in *; apply (IHp _x); auto.
intro; intros.
generalize (remove_min_in ll lx ld lr _x y).
rewrite e0; simpl in *.
destruct 1.
apply H2; intuition.
Qed.
Hint Resolve remove_min_bst.
Lemma remove_min_gt_tree : forall l x e r h,
bst (Node l x e r h) ->
gt_tree (remove_min l x e r)#2#1 (remove_min l x e r)#1.
Proof.
intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
inv bst; auto.
inversion_clear H.
intro; intro.
rewrite e0 in *;simpl in *.
generalize (IHp _x H0).
generalize (remove_min_in ll lx ld lr _x m#1).
rewrite e0; simpl; intros.
rewrite (bal_in l' x d r y) in H.
assert (In m#1 (Node ll lx ld lr _x)) by (rewrite H4; auto); clear H4.
assert (X.lt m#1 x) by order.
decompose [or] H; order.
Qed.
Hint Resolve remove_min_gt_tree.
Lemma remove_min_find : forall l x e r h y,
bst (Node l x e r h) ->
find y (Node l x e r h) =
match X.compare y (remove_min l x e r)#2#1 with
| LT _ => None
| EQ _ => Some (remove_min l x e r)#2#2
| GT _ => find y (remove_min l x e r)#1
end.
Proof.
intros.
destruct X.compare.
rewrite not_find_iff; auto.
rewrite remove_min_in; red; destruct 1 as [H'|H']; [ order | ].
generalize (remove_min_gt_tree H H'); order.
apply find_1; auto.
rewrite remove_min_mapsto; auto.
rewrite find_mapsto_equiv; eauto; intros.
rewrite remove_min_mapsto; intuition; order.
Qed.
(** * Merging two trees *)
Lemma merge_in : forall m1 m2 y, bst m1 -> bst m2 ->
(In y (merge m1 m2) <-> In y m1 \/ In y m2).
Proof.
intros m1 m2; functional induction (merge m1 m2);intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
intuition_in.
intuition_in.
rewrite bal_in, remove_min_in, e1; simpl; intuition.
Qed.
Lemma merge_mapsto : forall m1 m2 y e, bst m1 -> bst m2 ->
(MapsTo y e (merge m1 m2) <-> MapsTo y e m1 \/ MapsTo y e m2).
Proof.
intros m1 m2; functional induction (merge m1 m2); intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
intuition_in.
intuition_in.
rewrite bal_mapsto, remove_min_mapsto, e1; simpl; auto.
unfold create.
intuition; subst; auto.
inversion_clear H1; intuition.
Qed.
Lemma merge_bst : forall m1 m2, bst m1 -> bst m2 ->
(forall y1 y2 : key, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
bst (merge m1 m2).
Proof.
intros m1 m2; functional induction (merge m1 m2); intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
apply bal_bst; auto.
generalize (remove_min_bst H0); rewrite e1; simpl in *; auto.
intro; intro.
apply H1; auto.
generalize (remove_min_in l2 x2 d2 r2 _x4 x); rewrite e1; simpl; intuition.
generalize (remove_min_gt_tree H0); rewrite e1; simpl; auto.
Qed.
(** * Deletion *)
Lemma remove_in : forall m x y, bst m ->
(In y (remove x m) <-> ~ X.eq y x /\ In y m).
Proof.
intros m x; functional induction (remove x m); simpl; intros.
intuition_in.
(* LT *)
inv bst; clear e0.
rewrite bal_in; auto.
generalize (IHt y0 H0); intuition; [ order | order | intuition_in ].
(* EQ *)
inv bst; clear e0.
rewrite merge_in; intuition; [ order | order | intuition_in ].
elim H4; eauto.
(* GT *)
inv bst; clear e0.
rewrite bal_in; auto.
generalize (IHt y0 H1); intuition; [ order | order | intuition_in ].
Qed.
Lemma remove_bst : forall m x, bst m -> bst (remove x m).
Proof.
intros m x; functional induction (remove x m); simpl; intros.
auto.
(* LT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H0) in H; auto.
destruct H; eauto.
(* EQ *)
inv bst.
apply merge_bst; eauto.
(* GT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H1) in H; auto.
destruct H; eauto.
Qed.
Lemma remove_1 : forall m x y, bst m -> X.eq x y -> ~ In y (remove x m).
Proof.
intros; rewrite remove_in; intuition.
Qed.
Lemma remove_2 : forall m x y e, bst m -> ~X.eq x y ->
MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k);
intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
try solve [inv MapsTo; auto].
rewrite merge_mapsto; auto.
inv MapsTo; auto; order.
Qed.
Lemma remove_3 : forall m x y e, bst m ->
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k); intros Bs; inv bst;
try rewrite bal_mapsto; auto; unfold create.
intros; inv MapsTo; auto.
rewrite merge_mapsto; intuition.
intros; inv MapsTo; auto.
Qed.
(** * join *)
Lemma join_in : forall l x d r y,
In y (join l x d r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
join_tac.
simpl.
rewrite add_in; intuition_in.
rewrite add_in; intuition_in.
rewrite bal_in, Hlr; clear Hlr Hrl; intuition_in.
rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
apply create_in.
Qed.
Lemma join_bst : forall l x d r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (join l x d r).
Proof.
join_tac; auto; try (simpl; auto; fail); inv bst; apply bal_bst; auto;
clear Hrl Hlr; intro; intros; rewrite join_in in *.
intuition; [ apply MX.lt_eq with x | ]; eauto.
intuition; [ apply MX.eq_lt with x | ]; eauto.
Qed.
Hint Resolve join_bst.
Lemma join_find : forall l x d r y,
bst l -> bst r -> lt_tree x l -> gt_tree x r ->
find y (join l x d r) = find y (create l x d r).
Proof.
join_tac; auto; inv bst;
simpl (join (Leaf elt));
try (assert (X.lt lx x) by auto);
try (assert (X.lt x rx) by auto);
rewrite ?add_find, ?bal_find; auto.
simpl; destruct X.compare; auto.
rewrite not_find_iff; auto; intro; order.
simpl; repeat (destruct X.compare; auto); try (order; fail).
rewrite not_find_iff by auto; intro.
assert (X.lt y x) by auto; order.
simpl; rewrite Hlr; simpl; auto.
repeat (destruct X.compare; auto); order.
intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; try generalize (H2 _ Hu); order.
simpl; rewrite Hrl; simpl; auto.
repeat (destruct X.compare; auto); order.
intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; order.
Qed.
(** * split *)
Lemma split_in_1 : forall m x, bst m -> forall y,
(In y (split x m)#l <-> In y m /\ X.lt y x).
Proof.
intros m x; functional induction (split x m); simpl; intros;
inv bst; try clear e0.
intuition_in.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
intuition_in; order.
rewrite join_in.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_2 : forall m x, bst m -> forall y,
(In y (split x m)#r <-> In y m /\ X.lt x y).
Proof.
intros m x; functional induction (split x m); subst; simpl; intros;
inv bst; try clear e0.
intuition_in.
rewrite join_in.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
intuition_in; order.
rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_3 : forall m x, bst m ->
(split x m)#o = find x m.
Proof.
intros m x; functional induction (split x m); subst; simpl; auto;
intros; inv bst; try clear e0;
destruct X.compare; try order; trivial; rewrite <- IHt, e1; auto.
Qed.
Lemma split_bst : forall m x, bst m ->
bst (split x m)#l /\ bst (split x m)#r.
Proof.
intros m x; functional induction (split x m); subst; simpl; intros;
inv bst; try clear e0; try rewrite e1 in *; simpl in *; intuition;
apply join_bst; auto.
intros y0.
generalize (split_in_2 x H0 y0); rewrite e1; simpl; intuition.
intros y0.
generalize (split_in_1 x H1 y0); rewrite e1; simpl; intuition.
Qed.
Lemma split_lt_tree : forall m x, bst m -> lt_tree x (split x m)#l.
Proof.
intros m x B y Hy; rewrite split_in_1 in Hy; intuition.
Qed.
Lemma split_gt_tree : forall m x, bst m -> gt_tree x (split x m)#r.
Proof.
intros m x B y Hy; rewrite split_in_2 in Hy; intuition.
Qed.
Lemma split_find : forall m x y, bst m ->
find y m = match X.compare y x with
| LT _ => find y (split x m)#l
| EQ _ => (split x m)#o
| GT _ => find y (split x m)#r
end.
Proof.
intros m x; functional induction (split x m); subst; simpl; intros;
inv bst; try clear e0; try rewrite e1 in *; simpl in *;
[ destruct X.compare; auto | .. ];
try match goal with E:split ?x ?t = _, B:bst ?t |- _ =>
generalize (split_in_1 x B)(split_in_2 x B)(split_bst x B);
rewrite E; simpl; destruct 3 end.
rewrite join_find, IHt; auto; clear IHt; simpl.
repeat (destruct X.compare; auto); order.
intro y1; rewrite H4; intuition.
repeat (destruct X.compare; auto); order.
rewrite join_find, IHt; auto; clear IHt; simpl.
repeat (destruct X.compare; auto); order.
intros y1; rewrite H; intuition.
Qed.
(** * Concatenation *)
Lemma concat_in : forall m1 m2 y,
In y (concat m1 m2) <-> In y m1 \/ In y m2.
Proof.
intros m1 m2; functional induction (concat m1 m2); intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
intuition_in.
intuition_in.
rewrite join_in, remove_min_in, e1; simpl; intuition.
Qed.
Lemma concat_bst : forall m1 m2, bst m1 -> bst m2 ->
(forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
bst (concat m1 m2).
Proof.
intros m1 m2; functional induction (concat m1 m2); intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
apply join_bst; auto.
change (bst (m2',xd)#1). rewrite <-e1; eauto.
intros y Hy.
apply H1; auto.
rewrite remove_min_in, e1; simpl; auto.
change (gt_tree (m2',xd)#2#1 (m2',xd)#1). rewrite <-e1; eauto.
Qed.
Hint Resolve concat_bst.
Lemma concat_find : forall m1 m2 y, bst m1 -> bst m2 ->
(forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
find y (concat m1 m2) =
match find y m2 with Some d => Some d | None => find y m1 end.
Proof.
intros m1 m2; functional induction (concat m1 m2); intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
simpl; destruct (find y m2); auto.
generalize (remove_min_find y H0)(remove_min_in l2 x2 d2 r2 _x4)
(remove_min_bst H0)(remove_min_gt_tree H0);
rewrite e1; simpl fst; simpl snd; intros.
inv bst.
rewrite H2, join_find; auto; clear H2.
simpl; destruct X.compare as [Hlt| |Hlt]; simpl; auto.
destruct (find y m2'); auto.
symmetry; rewrite not_find_iff; auto; intro.
apply (MX.lt_not_gt Hlt); apply H1; auto; rewrite H3; auto.
intros z Hz; apply H1; auto; rewrite H3; auto.
Qed.
(** * Elements *)
Notation eqk := (PX.eqk (elt:= elt)).
Notation eqke := (PX.eqke (elt:= elt)).
Notation ltk := (PX.ltk (elt:= elt)).
Lemma elements_aux_mapsto : forall (s:t elt) acc x e,
InA eqke (x,e) (elements_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
Proof.
induction s as [ | l Hl x e r Hr h ]; simpl; auto.
intuition.
inversion H0.
intros.
rewrite Hl.
destruct (Hr acc x0 e0); clear Hl Hr.
intuition; inversion_clear H3; intuition.
destruct H0; simpl in *; subst; intuition.
Qed.
Lemma elements_mapsto : forall (s:t elt) x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
Proof.
intros; generalize (elements_aux_mapsto s nil x e); intuition.
inversion_clear H0.
Qed.
Lemma elements_in : forall (s:t elt) x, L.PX.In x (elements s) <-> In x s.
Proof.
intros.
unfold L.PX.In.
rewrite <- In_alt; unfold In0.
firstorder.
exists x0.
rewrite <- elements_mapsto; auto.
exists x0.
unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma elements_aux_sort : forall (s:t elt) acc, bst s -> sort ltk acc ->
(forall x e y, InA eqke (x,e) acc -> In y s -> X.lt y x) ->
sort ltk (elements_aux acc s).
Proof.
induction s as [ | l Hl y e r Hr h]; simpl; intuition.
inv bst.
apply Hl; auto.
constructor.
apply Hr; eauto.
apply InA_InfA with (eqA:=eqke); auto with *. intros (y',e') H6.
destruct (elements_aux_mapsto r acc y' e'); intuition.
red; simpl; eauto.
red; simpl; eauto.
intros.
inversion_clear H.
destruct H7; simpl in *.
order.
destruct (elements_aux_mapsto r acc x e0); intuition eauto.
Qed.
Lemma elements_sort : forall s : t elt, bst s -> sort ltk (elements s).
Proof.
intros; unfold elements; apply elements_aux_sort; auto.
intros; inversion H0.
Qed.
Hint Resolve elements_sort.
Lemma elements_nodup : forall s : t elt, bst s -> NoDupA eqk (elements s).
Proof.
intros; apply PX.Sort_NoDupA; auto.
Qed.
Lemma elements_aux_cardinal :
forall (m:t elt) acc, (length acc + cardinal m)%nat = length (elements_aux acc m).
Proof.
simple induction m; simpl; intuition.
rewrite <- H; simpl.
rewrite <- H0; omega.
Qed.
Lemma elements_cardinal : forall (m:t elt), cardinal m = length (elements m).
Proof.
exact (fun m => elements_aux_cardinal m nil).
Qed.
Lemma elements_app :
forall (s:t elt) acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma elements_node :
forall (t1 t2:t elt) x e z l,
elements t1 ++ (x,e) :: elements t2 ++ l =
elements (Node t1 x e t2 z) ++ l.
Proof.
unfold elements; simpl; intros.
rewrite !elements_app, !app_nil_r, !app_ass; auto.
Qed.
(** * Fold *)
Definition fold' (A : Type) (f : key -> elt -> A -> A)(s : t elt) :=
L.fold f (elements s).
Lemma fold_equiv_aux :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc,
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
simpl; intuition.
simpl; intros.
rewrite H.
simpl.
apply H0.
Qed.
Lemma fold_equiv :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
unfold fold', elements.
simple induction s; simpl; auto; intros.
rewrite fold_equiv_aux.
rewrite H0.
simpl; auto.
Qed.
Lemma fold_1 :
forall (s:t elt)(Hs:bst s)(A : Type)(i:A)(f : key -> elt -> A -> A),
fold f s i = fold_left (fun a p => f p#1 p#2 a) (elements s) i.
Proof.
intros.
rewrite fold_equiv.
unfold fold'.
rewrite L.fold_1.
unfold L.elements; auto.
Qed.
(** * Comparison *)
(** [flatten_e e] returns the list of elements of the enumeration [e]
i.e. the list of elements actually compared *)
Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with
| End _ => nil
| More x e t r => (x,e) :: elements t ++ flatten_e r
end.
Lemma flatten_e_elements :
forall (l:t elt) r x d z e,
elements l ++ flatten_e (More x d r e) =
elements (Node l x d r z) ++ flatten_e e.
Proof.
intros; apply elements_node.
Qed.
Lemma cons_1 : forall (s:t elt) e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; auto; intros.
simpl flatten_e; rewrite IHs1; apply flatten_e_elements; auto.
Qed.
(** Proof of correction for the comparison *)
Variable cmp : elt->elt->bool.
Definition IfEq b l1 l2 := L.equal cmp l1 l2 = b.
Lemma cons_IfEq : forall b x1 x2 d1 d2 l1 l2,
X.eq x1 x2 -> cmp d1 d2 = true ->
IfEq b l1 l2 ->
IfEq b ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
unfold IfEq; destruct b; simpl; intros; destruct X.compare; simpl;
try rewrite H0; auto; order.
Qed.
Lemma equal_end_IfEq : forall e2,
IfEq (equal_end e2) nil (flatten_e e2).
Proof.
destruct e2; red; auto.
Qed.
Lemma equal_more_IfEq :
forall x1 d1 (cont:enumeration elt -> bool) x2 d2 r2 e2 l,
IfEq (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
IfEq (equal_more cmp x1 d1 cont (More x2 d2 r2 e2)) ((x1,d1)::l)
(flatten_e (More x2 d2 r2 e2)).
Proof.
unfold IfEq; simpl; intros; destruct X.compare; simpl; auto.
rewrite <-andb_lazy_alt; f_equal; auto.
Qed.
Lemma equal_cont_IfEq : forall m1 cont e2 l,
(forall e, IfEq (cont e) l (flatten_e e)) ->
IfEq (equal_cont cmp m1 cont e2) (elements m1 ++ l) (flatten_e e2).
Proof.
induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- elements_node; simpl.
apply Hl1; auto.
clear e2; intros [|x2 d2 r2 e2].
simpl; red; auto.
apply equal_more_IfEq.
rewrite <- cons_1; auto.
Qed.
Lemma equal_IfEq : forall (m1 m2:t elt),
IfEq (equal cmp m1 m2) (elements m1) (elements m2).
Proof.
intros; unfold equal.
rewrite <- (app_nil_r (elements m1)).
replace (elements m2) with (flatten_e (cons m2 (End _)))
by (rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply equal_cont_IfEq.
intros.
apply equal_end_IfEq; auto.
Qed.
Definition Equivb m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma Equivb_elements : forall s s',
Equivb s s' <-> L.Equivb cmp (elements s) (elements s').
Proof.
unfold Equivb, L.Equivb; split; split; intros.
do 2 rewrite elements_in; firstorder.
destruct H.
apply (H2 k); rewrite <- elements_mapsto; auto.
do 2 rewrite <- elements_in; firstorder.
destruct H.
apply (H2 k); unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma equal_Equivb : forall (s s': t elt), bst s -> bst s' ->
(equal cmp s s' = true <-> Equivb s s').
Proof.
intros s s' B B'.
rewrite Equivb_elements, <- equal_IfEq.
split; [apply L.equal_2|apply L.equal_1]; auto.
Qed.
End Elt.
Section Map.
Variable elt elt' : Type.
Variable f : elt -> elt'.
Lemma map_1 : forall (m: t elt)(x:key)(e:elt),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_2 : forall (m: t elt)(x:key),
In x (map f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_bst : forall m, bst m -> bst (map f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto;
red; auto using map_2.
Qed.
End Map.
Section Mapi.
Variable elt elt' : Type.
Variable f : key -> elt -> elt'.
Lemma mapi_1 : forall (m: tree elt)(x:key)(e:elt),
MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
exists k; auto.
destruct (IHm1 _ _ H0).
exists x0; intuition.
destruct (IHm2 _ _ H0).
exists x0; intuition.
Qed.
Lemma mapi_2 : forall (m: t elt)(x:key),
In x (mapi f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma mapi_bst : forall m, bst m -> bst (mapi f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto;
red; auto using mapi_2.
Qed.
End Mapi.
Section Map_option.
Variable elt elt' : Type.
Variable f : key -> elt -> option elt'.
Hypothesis f_compat : forall x x' d, X.eq x x' -> f x d = f x' d.
Lemma map_option_2 : forall (m:t elt)(x:key),
In x (map_option f m) -> exists d, MapsTo x d m /\ f x d <> None.
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros.
inversion H.
rewrite join_in in H; destruct H as [H|[H|H]].
exists d; split; auto; rewrite (f_compat d H), e0; discriminate.
destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
rewrite concat_in in H; destruct H as [H|H].
destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
Qed.
Lemma map_option_bst : forall m, bst m -> bst (map_option f m).
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros;
inv bst.
apply join_bst; auto; intros y H;
destruct (map_option_2 H) as (d0 & ? & ?); eauto using MapsTo_In.
apply concat_bst; auto; intros y y' H H'.
destruct (map_option_2 H) as (d0 & ? & ?).
destruct (map_option_2 H') as (d0' & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
Hint Resolve map_option_bst.
Ltac nonify e :=
replace e with (@None elt) by
(symmetry; rewrite not_find_iff; auto; intro; order).
Lemma map_option_find : forall (m:t elt)(x:key),
bst m ->
find x (map_option f m) =
match (find x m) with Some d => f x d | None => None end.
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros;
inv bst; rewrite join_find || rewrite concat_find; auto; simpl;
try destruct X.compare as [Hlt|Heq|Hlt]; simpl; auto.
rewrite (f_compat d Heq); auto.
intros y H;
destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
intros y H;
destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
rewrite <- IHt, IHt0; auto; nonify (find x0 r); auto.
rewrite IHt, IHt0; auto; nonify (find x0 r); nonify (find x0 l); auto.
rewrite (f_compat d Heq); auto.
rewrite <- IHt0, IHt; auto; nonify (find x0 l); auto.
destruct (find x0 (map_option f r)); auto.
intros y y' H H'.
destruct (map_option_2 H) as (? & ? & ?).
destruct (map_option_2 H') as (? & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
End Map_option.
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f0 : key -> option elt -> option elt' -> option elt''.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Hypothesis f0_f : forall x d o, f x d o = f0 x (Some d) o.
Hypothesis mapl_bst : forall m, bst m -> bst (mapl m).
Hypothesis mapr_bst : forall m', bst m' -> bst (mapr m').
Hypothesis mapl_f0 : forall x m, bst m ->
find x (mapl m) =
match find x m with Some d => f0 x (Some d) None | None => None end.
Hypothesis mapr_f0 : forall x m', bst m' ->
find x (mapr m') =
match find x m' with Some d' => f0 x None (Some d') | None => None end.
Hypothesis f0_compat : forall x x' o o', X.eq x x' -> f0 x o o' = f0 x' o o'.
Notation map2_opt := (map2_opt f mapl mapr).
Lemma map2_opt_2 : forall m m' y, bst m -> bst m' ->
In y (map2_opt m m') -> In y m \/ In y m'.
Proof.
intros m m'; functional induction (map2_opt m m'); intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
try (generalize (split_in_1 x1 H0 y)(split_in_2 x1 H0 y)
(split_bst x1 H0); rewrite e1; simpl; destruct 3; inv bst).
right; apply find_in.
generalize (in_find (mapr_bst H0) H1); rewrite mapr_f0; auto.
destruct (find y m2); auto; intros; discriminate.
factornode l1 x1 d1 r1 _x as m1.
left; apply find_in.
generalize (in_find (mapl_bst H) H1); rewrite mapl_f0; auto.
destruct (find y m1); auto; intros; discriminate.
rewrite join_in in H1; destruct H1 as [H'|[H'|H']]; auto.
destruct (IHt1 y H6 H4 H'); intuition.
destruct (IHt0 y H7 H5 H'); intuition.
rewrite concat_in in H1; destruct H1 as [H'|H']; auto.
destruct (IHt1 y H6 H4 H'); intuition.
destruct (IHt0 y H7 H5 H'); intuition.
Qed.
Lemma map2_opt_bst : forall m m', bst m -> bst m' ->
bst (map2_opt m m').
Proof.
intros m m'; functional induction (map2_opt m m'); intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; inv bst;
generalize (split_in_1 x1 H0)(split_in_2 x1 H0)(split_bst x1 H0);
rewrite e1; simpl in *; destruct 3.
apply join_bst; auto.
intros y Hy; specialize H with y.
destruct (map2_opt_2 H1 H6 Hy); intuition.
intros y Hy; specialize H5 with y.
destruct (map2_opt_2 H2 H7 Hy); intuition.
apply concat_bst; auto.
intros y y' Hy Hy'; specialize H with y; specialize H5 with y'.
apply X.lt_trans with x1.
destruct (map2_opt_2 H1 H6 Hy); intuition.
destruct (map2_opt_2 H2 H7 Hy'); intuition.
Qed.
Hint Resolve map2_opt_bst.
Ltac map2_aux :=
match goal with
| H : In ?x _ \/ In ?x ?m,
H' : find ?x ?m = find ?x ?m', B:bst ?m, B':bst ?m' |- _ =>
destruct H; [ intuition_in; order |
rewrite <-(find_in_equiv B B' H'); auto ]
end.
Ltac nonify t :=
match t with (find ?y (map2_opt ?m ?m')) =>
replace t with (@None elt'');
[ | symmetry; rewrite not_find_iff; auto; intro;
destruct (@map2_opt_2 m m' y); auto; order ]
end.
Lemma map2_opt_1 : forall m m' y, bst m -> bst m' ->
In y m \/ In y m' ->
find y (map2_opt m m') = f0 y (find y m) (find y m').
Proof.
intros m m'; functional induction (map2_opt m m'); intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
try (generalize (split_in_1 x1 H0)(split_in_2 x1 H0)
(split_in_3 x1 H0)(split_bst x1 H0)(split_find x1 y H0)
(split_lt_tree (x:=x1) H0)(split_gt_tree (x:=x1) H0);
rewrite e1; simpl in *; destruct 4; intros; inv bst;
subst o2; rewrite H7, ?join_find, ?concat_find; auto).
simpl; destruct H1; [ inversion_clear H1 | ].
rewrite mapr_f0; auto.
generalize (in_find H0 H1); destruct (find y m2); intuition.
factornode l1 x1 d1 r1 _x as m1.
destruct H1; [ | inversion_clear H1 ].
rewrite mapl_f0; auto.
generalize (in_find H H1); destruct (find y m1); intuition.
simpl; destruct X.compare; auto.
apply IHt1; auto; map2_aux.
rewrite (@f0_compat y x1), <- f0_f; auto.
apply IHt0; auto; map2_aux.
intros z Hz; destruct (@map2_opt_2 l1 l2' z); auto.
intros z Hz; destruct (@map2_opt_2 r1 r2' z); auto.
destruct X.compare.
nonify (find y (map2_opt r1 r2')).
apply IHt1; auto; map2_aux.
nonify (find y (map2_opt r1 r2')).
nonify (find y (map2_opt l1 l2')).
rewrite (@f0_compat y x1), <- f0_f; auto.
nonify (find y (map2_opt l1 l2')).
rewrite IHt0; auto; [ | map2_aux ].
destruct (f0 y (find y r1) (find y r2')); auto.
intros y1 y2 Hy1 Hy2; apply X.lt_trans with x1.
destruct (@map2_opt_2 l1 l2' y1); auto.
destruct (@map2_opt_2 r1 r2' y2); auto.
Qed.
End Map2_opt.
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Lemma map2_bst : forall m m', bst m -> bst m' -> bst (map2 f m m').
Proof.
unfold map2; intros.
apply map2_opt_bst with (fun _ => f); auto using map_option_bst;
intros; rewrite map_option_find; auto.
Qed.
Lemma map2_1 : forall m m' y, bst m -> bst m' ->
In y m \/ In y m' -> find y (map2 f m m') = f (find y m) (find y m').
Proof.
unfold map2; intros.
rewrite (map2_opt_1 (f0:=fun _ => f));
auto using map_option_bst; intros; rewrite map_option_find; auto.
Qed.
Lemma map2_2 : forall m m' y, bst m -> bst m' ->
In y (map2 f m m') -> In y m \/ In y m'.
Proof.
unfold map2; intros.
eapply map2_opt_2 with (f0:=fun _ => f); try eassumption; trivial; intros.
apply map_option_bst; auto.
apply map_option_bst; auto.
rewrite map_option_find; auto.
rewrite map_option_find; auto.
Qed.
End Map2.
End Proofs.
End Raw.
(** * Encapsulation
Now, in order to really provide a functor implementing [S], we
need to encapsulate everything into a type of balanced binary search trees. *)
Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
Module Raw := Raw I X.
Import Raw.Proofs.
Record bst (elt:Type) :=
Bst {this :> Raw.tree elt; is_bst : Raw.bst this}.
Definition t := bst.
Definition key := E.t.
Section Elt.
Variable elt elt' elt'': Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Bst (empty_bst elt).
Definition is_empty m : bool := Raw.is_empty m.(this).
Definition add x e m : t elt := Bst (add_bst x e m.(is_bst)).
Definition remove x m : t elt := Bst (remove_bst x m.(is_bst)).
Definition mem x m : bool := Raw.mem x m.(this).
Definition find x m : option elt := Raw.find x m.(this).
Definition map f m : t elt' := Bst (map_bst f m.(is_bst)).
Definition mapi (f:key->elt->elt') m : t elt' :=
Bst (mapi_bst f m.(is_bst)).
Definition map2 f m (m':t elt') : t elt'' :=
Bst (map2_bst f m.(is_bst) m'.(is_bst)).
Definition elements m : list (key*elt) := Raw.elements m.(this).
Definition cardinal m := Raw.cardinal m.(this).
Definition fold (A:Type) (f:key->elt->A->A) m i := Raw.fold (A:=A) f m.(this) i.
Definition equal cmp m m' : bool := Raw.equal cmp m.(this) m'.(this).
Definition MapsTo x e m : Prop := Raw.MapsTo x e m.(this).
Definition In x m : Prop := Raw.In0 x m.(this).
Definition Empty m : Prop := Empty m.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros m; exact (@MapsTo_1 _ m.(this)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
apply m.(is_bst).
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
Qed.
Lemma empty_1 : Empty empty.
Proof. exact (@empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof. intros m; exact (@is_empty_1 _ m.(this)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof. intros m; exact (@is_empty_2 _ m.(this)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof.
unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
apply m.(is_bst).
Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof. intros m x y e; exact (@remove_2 elt _ x y e m.(is_bst)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m x y e; exact (@remove_3 elt _ x y e m.(is_bst)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m x e; exact (@find_1 elt _ x e m.(is_bst)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@find_2 elt m.(this)). Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@fold_1 elt m.(this) m.(is_bst)). Qed.
Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
Qed.
Lemma elements_2 : forall m x e,
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
Proof. intros m; exact (@elements_sort elt m.(this) m.(is_bst)). Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@elements_nodup elt m.(this) m.(is_bst)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof. intro m; exact (@elements_cardinal elt m.(this)). Qed.
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp := Equiv (Cmp cmp).
Lemma Equivb_Equivb : forall cmp m m',
Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In. intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
Qed.
Lemma equal_1 : forall m m' cmp,
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite equal_Equivb; auto.
Qed.
Lemma equal_2 : forall m m' cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite <-equal_Equivb; auto.
Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f m.(this) x e). Qed.
Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Proof.
intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
apply map_2; auto.
Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f m.(this) x e). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof.
intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
unfold find, map2, In; intros elt elt' elt'' m m' x f.
do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
apply m.(is_bst).
apply m'.(is_bst).
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
unfold In, map2; intros elt elt' elt'' m m' x f.
do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
apply m.(is_bst).
apply m'.(is_bst).
Qed.
End IntMake.
Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Sord with Module Data := D
with Module MapS.E := X.
Module Data := D.
Module Import MapS := IntMake(I)(X).
Module LO := FMapList.Make_ord(X)(D).
Module R := Raw.
Module P := Raw.Proofs.
Definition t := MapS.t D.t.
Definition cmp e e' :=
match D.compare e e' with EQ _ => true | _ => false end.
(** One step of comparison of elements *)
Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 :=
match e2 with
| R.End _ => Gt
| R.More x2 d2 r2 e2 =>
match X.compare x1 x2 with
| EQ _ => match D.compare d1 d2 with
| EQ _ => cont (R.cons r2 e2)
| LT _ => Lt
| GT _ => Gt
end
| LT _ => Lt
| GT _ => Gt
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 :=
match s1 with
| R.Leaf _ => cont e2
| R.Node l1 x1 d1 r1 _ =>
compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition compare_end (e2:R.enumeration D.t) :=
match e2 with R.End _ => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare_pure s1 s2 :=
compare_cont s1 compare_end (R.cons s2 (Raw.End _)).
(** Correctness of this comparison *)
Definition Cmp c :=
match c with
| Eq => LO.eq_list
| Lt => LO.lt_list
| Gt => (fun l1 l2 => LO.lt_list l2 l1)
end.
Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
X.eq x1 x2 -> D.eq d1 d2 ->
Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
destruct c; simpl; intros; P.MX.elim_comp; auto.
Qed.
Hint Resolve cons_Cmp.
Lemma compare_end_Cmp :
forall e2, Cmp (compare_end e2) nil (P.flatten_e e2).
Proof.
destruct e2; simpl; auto.
Qed.
Lemma compare_more_Cmp : forall x1 d1 cont x2 d2 r2 e2 l,
Cmp (cont (R.cons r2 e2)) l (R.elements r2 ++ P.flatten_e e2) ->
Cmp (compare_more x1 d1 cont (R.More x2 d2 r2 e2)) ((x1,d1)::l)
(P.flatten_e (R.More x2 d2 r2 e2)).
Proof.
simpl; intros; destruct X.compare; simpl;
try destruct D.compare; simpl; auto; P.MX.elim_comp; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (P.flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (R.elements s1 ++ l) (P.flatten_e e2).
Proof.
induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- P.elements_node; simpl.
apply Hl1; auto. clear e2. intros [|x2 d2 r2 e2].
simpl; auto.
apply compare_more_Cmp.
rewrite <- P.cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2,
Cmp (compare_pure s1 s2) (R.elements s1) (R.elements s2).
Proof.
intros; unfold compare_pure.
rewrite <- (app_nil_r (R.elements s1)).
replace (R.elements s2) with (P.flatten_e (R.cons s2 (R.End _))) by
(rewrite P.cons_1; simpl; rewrite app_nil_r; auto).
auto using compare_cont_Cmp, compare_end_Cmp.
Qed.
(** The dependent-style [compare] *)
Definition eq (m1 m2 : t) := LO.eq_list (elements m1) (elements m2).
Definition lt (m1 m2 : t) := LO.lt_list (elements m1) (elements m2).
Definition compare (s s':t) : Compare lt eq s s'.
Proof.
destruct s as (s,b), s' as (s',b').
generalize (compare_Cmp s s').
destruct compare_pure; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
(* Proofs about [eq] and [lt] *)
Definition selements (m1 : t) :=
LO.MapS.Build_slist (P.elements_sort m1.(is_bst)).
Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
Proof.
unfold eq, seq, selements, elements, LO.eq; intuition.
Qed.
Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
Proof.
unfold lt, slt, selements, elements, LO.lt; intuition.
Qed.
Lemma eq_1 : forall (m m' : t), Equivb cmp m m' -> eq m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
auto using LO.eq_1.
Qed.
Lemma eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
intros.
generalize (LO.eq_2 H).
auto.
Qed.
Lemma eq_refl : forall m : t, eq m m.
Proof.
intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Proof.
intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
intros; eapply LO.eq_trans; eauto.
Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
intros; eapply LO.lt_trans; eauto.
Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
intros; apply LO.lt_not_eq; auto.
Qed.
End IntMake_ord.
(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
Module Make (X: OrderedType) <: S with Module E := X
:=IntMake(Z_as_Int)(X).
Module Make_ord (X: OrderedType)(D: OrderedType)
<: Sord with Module Data := D
with Module MapS.E := X
:=IntMake_ord(Z_as_Int)(X)(D).
|