summaryrefslogtreecommitdiff
path: root/theories/Classes/SetoidDec.v
blob: 6e92a5de1dde7529e402c027405c2cb4d181f92e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * Decidable setoid equality theory.

   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)

(* $Id$ *)

Set Implicit Arguments.
Unset Strict Implicit.

Generalizable Variables A B .

(** Export notations. *)

Require Export Coq.Classes.SetoidClass.

(** The [DecidableSetoid] class asserts decidability of a [Setoid].
   It can be useful in proofs to reason more classically. *)

Require Import Coq.Logic.Decidable.

Class DecidableSetoid `(S : Setoid A) :=
  setoid_decidable : forall x y : A, decidable (x == y).

(** The [EqDec] class gives a decision procedure for a particular setoid
   equality. *)

Class EqDec `(S : Setoid A) :=
  equiv_dec : forall x y : A, { x == y } + { x =/= y }.

(** We define the [==] overloaded notation for deciding equality. It does not
   take precedence of [==] defined in the type scope, hence we can have both
   at the same time. *)

Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70).

Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
  match x with
    | left H => @right _ _ H
    | right H => @left _ _ H
  end.

Require Import Coq.Program.Program.

Open Local Scope program_scope.

(** Invert the branches. *)

Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y).

(** Overloaded notation for inequality. *)

Infix "=/=" := nequiv_dec (no associativity, at level 70).

(** Define boolean versions, losing the logical information. *)

Definition equiv_decb `{EqDec A} (x y : A) : bool :=
  if x == y then true else false.

Definition nequiv_decb `{EqDec A} (x y : A) : bool :=
  negb (equiv_decb x y).

Infix "==b" := equiv_decb (no associativity, at level 70).
Infix "<>b" := nequiv_decb (no associativity, at level 70).

(** Decidable leibniz equality instances. *)

Require Import Coq.Arith.Arith.

(** The equiv is burried inside the setoid, but we can recover
  it by specifying which setoid we're talking about. *)

Program Instance eq_setoid A : Setoid A | 10 :=
  { equiv := eq ; setoid_equiv := eq_equivalence }.

Program Instance nat_eq_eqdec : EqDec (eq_setoid nat) :=
  eq_nat_dec.

Require Import Coq.Bool.Bool.

Program Instance bool_eqdec : EqDec (eq_setoid bool) :=
  bool_dec.

Program Instance unit_eqdec : EqDec (eq_setoid unit) :=
  λ x y, in_left.

  Next Obligation.
  Proof.
    destruct x ; destruct y.
    reflexivity.
  Qed.

Program Instance prod_eqdec `(! EqDec (eq_setoid A), ! EqDec (eq_setoid B)) : EqDec (eq_setoid (prod A B)) :=
  λ x y,
    let '(x1, x2) := x in
    let '(y1, y2) := y in
    if x1 == y1 then
      if x2 == y2 then in_left
      else in_right
    else in_right.

  Solve Obligations using unfold complement ; program_simpl.

(** Objects of function spaces with countable domains like bool
  have decidable equality. *)

Program Instance bool_function_eqdec `(! EqDec (eq_setoid A)) : EqDec (eq_setoid (bool -> A)) :=
  λ f g,
    if f true == g true then
      if f false == g false then in_left
      else in_right
    else in_right.

  Solve Obligations using try red ; unfold equiv, complement ; program_simpl.

  Next Obligation.
  Proof.
    extensionality x.
    destruct x ; auto.
  Qed.